
Deep Learning on Geometry Representations
by

Dmitriy Smirnov
B.A., Pomona College (2017)

S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTEOF TECHNOLOGY

May 2022

©Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2022

Certified by .
Justin Solomon

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

Deep Learning on Geometry Representations

by

Dmitriy Smirnov

Submitted to the Department of Electrical Engineering and Computer Science
onMay 13, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

While deep learning has been successfully applied tomany tasks in computer graphics and vision,
standard learning architectures often operate on shape representations that are dense and regular,
like pixel or voxel grids. On the other hand, decades of computer graphics and geometry process-
ing research have resulted in specialized algorithms and tools that use representations without
such regular structure. In this thesis, we revisit conventional approaches in graphics in geometry
to propose deep learning pipelines and inductive biases that are directly compatible with com-
mon geometry representations, without relying on simple uniform structure.

Thesis Supervisor: Justin Solomon
Title: Associate Professor of Electrical Engineering and Computer Science

2

Acknowledgements

Thework in this dissertation has a complex dependency graphwith a combinatorial explosion of

individuals without any of whom none of this would have been possible. Below I highlight just

a few of those who helped me become who I am today, both personally and professionally.

I got my first taste of research in computer science during my college years thanks to Ran

Libeskind-Hadas atHarveyMudd. My interest in geometry and topology inparticularwas spurred

by Vin de Silva’sTopics in Geometry and Topology class as well as our collaborations that followed.

I am also very grateful to Dmitriy Morozov for guidance, mentorship, and friendship.

I have been lucky to interact with some remarkable people at MIT both within our lab and

outside of it. I am glad to have gotten the chance to collaborate with some of them—Misha Bess-

meltsev, Paul Zhang, David Palmer, Lingxiao Li, Mazdak Abulnaga—on research projects, but

many others have had an influence via random chats in the hallway or over a meal. Most impor-

tantly, I would like to thank my advisor, Justin Solomon, whose enthusiasm, patience, support,

and endless knowledge have been invaluable over the past five years.

A significant portion of thework in this dissertationwas completed as a result of projects that

began during internships at Adobe Research. I am grateful to have had the opportunity to learn

frommanywonderful collaborators at Adobe includingMatt Fisher, VovaKim,Michaël Gharbi,

Alyosha Efros, and Richard Zhang.

None of this would have been possible without the unconditional love and support from

my friends and family—on both sides of the country. I am grateful to my friends who managed

to keep in touch throughout the last five years: Adam Fisch, Adam Revello, Antony Bello, Igor

Berman, Katie Lewis, Kieran McVeigh, Leo Selker, Misha Vysotskiy, Noam Hurwitz, Rachel

Zimmerman, SamWarren, Sarah Gamble, Tal Schuster, Ted Kornish, Zivvy Epstein. Especially,

I would like to thankGabi and her family for givingme a second home on the East Coast andmy

3

parents and grandmother for always keeping the door open to my first on theWest.

MyPhDresearchhas been supportedby theNSFGraduateResearchFellowshipunderGrant

No. 1122374.

4

Contents

Abstract 2

Acknowledgements 3

1 Introduction 9

1.1 Motivation . 10

1.2 Related work . 11

1.2.1 Loss functions . 11

1.2.2 Shape representation . 12

1.3 Overview . 14

2 Learning from Triangle Meshes 15

2.1 Introduction . 15

2.2 Related work . 18

2.2.1 Spectral Shape Analysis . 18

2.2.2 Neural Networks onMeshes . 20

2.3 Overview . 23

2.4 Operator construction . 24

2.4.1 Operator . 24

2.4.2 Vectorial operators . 27

2.5 Differentiable spectral analysis . 27

2.5.1 The HodgeNet generalized eigenproblem 28

2.5.2 Derivative formulas . 29

5

2.5.3 Derivation of derivative formulas . 30

2.5.4 Derivative approximation . 34

2.6 From eigenvectors to features . 35

2.7 Additional details and parameters . 36

2.8 Experiments . 37

2.8.1 Mesh segmentation . 37

2.8.2 High-resolution mesh segmentation 38

2.8.3 Mesh classification . 38

2.8.4 Dihedral angle prediction . 39

2.8.5 Ablation . 40

2.9 Discussion . 40

3 Learning Parametric Shapes 42

3.1 Introduction . 42

3.2 Related work . 45

3.3 Preliminaries . 48

3.4 Method . 49

3.4.1 Learning parametric shapes using distance fields 49

3.4.2 Learning parametric patches . 55

3.5 Experiments . 60

3.5.1 2D: Font exploration and manipulation 60

3.5.2 3D: Volumetric primitive abstraction 66

3.5.3 3D: Patch-based CADmodeling . 67

3.6 Discussion . 75

4 Learning Manifolds with Boundary 77

4.1 Introduction . 77

4.2 Related work . 79

4.2.1 Minimal Surface Computation . 79

4.2.2 Deep Learning for Shape Reconstruction 80

4.3 Preliminaries . 81

6

4.3.1 Currents . 82

4.3.2 Boundary operator . 83

4.3.3 Mass norm . 83

4.3.4 Minimal mass problem . 83

4.3.5 Representing currents by forms . 84

4.4 DeepCurrents . 85

4.4.1 Neural representation . 85

4.4.2 Modifying the metric . 86

4.4.3 Loss functions . 88

4.4.4 Network architecture . 89

4.5 Experimental results . 90

4.5.1 Minimal surfaces . 90

4.5.2 Surface reconstruction . 91

4.5.3 Latent space learning . 92

4.5.4 Ablation study . 93

4.6 Discussion . 94

5 Learning Sprites 96

5.1 Introduction . 96

5.2 Related work . 97

5.3 Method . 99

5.3.1 Dictionary and sprite generator . 100

5.3.2 Layered frame decomposition using sprite anchors 101

5.3.3 Per-anchor sprite selection . 102

5.3.4 Local sprite transformations . 102

5.3.5 Compositing and reconstruction . 103

5.3.6 Training procedure . 104

5.4 Experimental results . 105

5.4.1 Comparisons . 105

5.4.2 Sprite-based game deconstruction 107

7

5.4.3 Ablation study . 108

5.4.4 Future directions and limitations . 109

5.5 Discussion . 110

6 Conclusion 112

Bibliography 114

8

1

Introduction

pixel

voxel mesh

parametric point cloud

graph
Image from https://opengameart.org/content/bunny-rabbit-lpc-style-for-pixelfarm/.

Figure 1-1: Some common representations for 2D and 3Dgeometry. While each has its advantages
anddrawbacks, often the representations that are intuitively compatiblewith standarddeep learn-
ing architectures (e.g., pixel or voxel grids) are not the ones required by downstream tasks. In this
thesis, we consider deep learning–based approaches to processing or producing data in formats
that lack this dense regular structure.

9

1.1 Motivation

Over the past decade, the culmination of developments in hardware, large-scale availability of

training data, and algorithmic advances have fueled the success of deep learning for a variety of

applications. Neural networks are broadly able to process incomplete, messy, and ambiguous

input, producing useful and consistent output.

Computer graphics and vision are no exception to the proliferation of deep learning, and

data-driven approaches have now become standard for many tasks. Within these fields, the most

fruitful deep learning architecture has been the convolutional neural network (CNN). Today

CNNs achieve state-of-the-art results in tasks such as image classification [Dai+21], segmenta-

tion [Zha+20; Dut+20; Yu+20], object detection [WH21; BWL20], and image-to-image transla-

tion [Iso+17].

CNNs, however, operate on raster representations (e.g., the pixel and voxel grids in Fig. 1-1).

Grid structure is fundamentally built into convolution as a mechanism for information to travel

between network layers and between pixels. This structure is leveraged to optimize GPU hard-

ware performance, andmanyof the readily available datasets are comprised of examples formatted

as pixel or voxel grids.

Raster representations are easy to work with for a variety of reasons. They are compatible

with standard input and output devices, like camera sensors and screens, and constitute an effec-

tive means to represent diverse visual content of varying structure and topology. As such, CNNs

leverage a reasonable inductive bias byprocessing data in a simpleEulerian fashion, applyingfixed

operations to a dense grid.

On the other hand, Lagrangian representations use sparse sets of parameters that move with

the shape, i.e., control points to express geometry. Such representations offer distinct advantages.

By expressing shapes as collections of primitives, we can easily apply transformations and render

at arbitrary resolution while storing only a sparse representation. Moreover, parametric represen-

tations are effective for high-level reasoning such as discovering common underlying structure

and estimating correspondences between shapes, facilitating tools for retrieval, exploration, and

style/structure transfer. They are intuitive to edit with conventional software, are resolution-

independent, and are efficient to store.

10

Many tools, algorithms, and mathematical frameworks have been developed for authoring,

manipulating, and analyzing such Lagrangian content. Standard CAD and 3D modeling soft-

ware is used by artists, engineers, and animators. Simulations rely on finite element analysis us-

ing meshes. However, by restricting the shape modalities compatible with our machine learning

methods toEulerian grids,we forego themany insights and techniques fromthesewell-established

tools.

In this thesis, we propose to design deep learning algorithms by considering shape representa-

tions as first class citizens. Rather than taking standard architectures, loss functions, and training

algorithms for granted and thus accepting the respective input and output shape modalities, we

consider other geometric atomic units that are richer andmore suitable for applications than the

pixel. This paradigm shift motivates us to modernize conventional approaches and applications

that predate deep learning. In particular, we borrow ideas from fields like metric geometry, geo-

metricmeasure theory, spectral geometry, and animation to develop custom-tailed loss functions,

architectures, and training pipelines, making deep learning a more useful tool for practitioners

working with visual data.

1.2 Related work

Several design choices must be made when developing a deep learning algorithm that either in-

puts or outputs geometry. Beyond the typical decisions of network architecture, optimizer, and

dataset, two particularly important aspects are the shape representation and the loss function.

The representation must be both compatible with the available data and useful for the target ap-

plication, and the loss function must provide a sensible interface between the training data and

network output. Many approaches to deep learning on geometric data bridge the gap between

these two aspects, and in this thesis we also pay particular attention to their interplay. Below, we

summarize some of the recent developments.

1.2.1 Loss functions

One popular direction for designing loss functions that operate on geometry employs a differen-

tiable renderer andmeasures 2D image loss between a rendering of the inferred 3Dmodel and the

11

input image [KUH18;Wu+16; Yan+16; Rez+16;Wu+17; TEM18]. A notable example is the work

byWu et al. [Wu+17], which learns amapping from a photograph to a normalmap, a depthmap,

a silhouette, and themapping from these outputs to a voxelization. They use a differentiable ren-

derer and measure inconsistencies in 2D. Another approach to learning geometry uses 3D loss

functions, measuring discrepancies between the predicted and target 3D shapes directly, often

via Chamfer or a regularized Wasserstein distance [Wil+19; Man+18; Gro+18; Par+19; Gao+19;

HTM19].

1.2.2 Shape representation

As noted by Park et al. [Par+19], in deep learning, explicit geometric representations, i.e., those

where the shape coordinates are directly specifiedwith an algebraic expression, canbedivided into

three classes: voxel-, point-, and mesh-based. Voxel-based methods [Del+18; Wu+17; Zha+18;

Wu+18], which operate on geometry defined on regular grids, yield dense reconstruction that

are limited in resolution, offer no topological guarantees, and cannot represent sharp features.

Point-based approaches represent geometry as a point cloud [Yin+18; Man+18; FSG17a; Lun+17;

Yan+18], capturing discrete samples of the shape but not manifold connectivity.

Some recent methods represent shapes using meshes [Nas+20; Han+19; WEH20; Wan+18b;

Mil+20a; Sha+22]. Typically, these approaches consider themesh as a graph structure and define

a convolutional operator to propagate information. The most recent approaches to mesh-based

learning [Sha+22], including the one proposed in this thesis, propose an architecture that learns

features on the underlying surface rather than the particular mesh triangulation.

While the content produced by these explicit approaches is generally easy to render and ma-

nipulate, it is often restricted in topology and/or resolution, limiting expressiveness.

A different approach circumvents topology and resolution issues by representing 3D shapes

implicitly, using functions parameterized by neural networks. In DeepSDF, Park et al. [Par+19]

learn a field that approximates signed distance to the target geometry, while Mescheder et al.

[Mes+19] and Chen and Zhang [CZ19] classify query points as being outside or inside a shape.

Others further improve the results by proposing regularizers, loss functions, and training or ren-

dering approaches [Gro+20; AL20; Tak+21; Lip21]. While these works achieve impressive levels

of detail in surface reconstruction, they largely suffer from two drawbacks—lack of control and

12

inability to represent open surfaces, i.e., those with boundary.

Neural implicit learning methods typically overfit to a single target shape or learn a family of

shapes parameterized by a high-dimensional latent space. While recent work has shown the possi-

bility of adapting classical geometry processing algorithms to neural implicit geometries [Yan+21],

applying targeted manipulations and deformations to learned shapes remains nontrivial. Several

papers propose hybrid representations, combining the expressive power of neural implicit repre-

sentations with the control afforded by explicit geometries. Genova et al. [Gen+20] reconstruct

shapes by learningmultiple implicit representations arranged according to a learned template con-

figuration. In DualSDF [Hao+20], manipulations can be applied to learned implicit shapes by

making changes to corresponding explicit geometric primitives. BSP-Net [CTZ20] and CvxNet

[Den+20] restrict the class of learned implicit surfaces to half-spaces and convex hulls, respec-

tively.

Because neural implicit shapes are typically level sets of learned functions, theymust be closed

surfaces. Two notable exceptions are [CMP20], which learns unsigned distance functions rather

than SDFs, and [Ven+21], which maps an input point to its closest point on the target surface.

Triangle mesh

Parametric primitivesNURBS Patches

Implicit surface with boundary Sprites

Gx

yF
Features

Input

Figure 1-2: An overview of the shape representations explored in this thesis. We consider deep
learning pipelines that take as input or produce as output geometry in common and useful for-
mats. Particularly, we propose a system that learns features on triangle meshes as well as pipelines
that output parametric patches and primitives, implicit surfaces with boundary, and sprites.

13

1.3 Overview

In this thesis, we propose deep learning architectures, training procedures, and algorithms that

make it feasible to train neural networks on datasets of visual data in formats that are intuitive

to use and compatible with common downstream tasks and applications, such as design, model-

ing, simulation, and rendering. In Chapter 2, we describe an encoder that operates on triangle

meshes, borrowing ideas from spectral geometry. We consider two approaches, inspiredbymetric

geometry, to produce parametrically-defined shapes, like CADmodels, in Chapter 3. Chapter 4

introduces a hybrid shape representation that combines the merits of explicit geometry with the

advantages of implicit representations. Finally, in Chapter 5, we propose a self-supervised ap-

proach to learning intuitive decompositions for collections of images, e.g., frames of animations

or video games, which allow for high-level manipulation, using the learned texture patches as

geometric primitives. We illustrate our contributions in Fig. 1-2.

14

2

Learning from Triangle Meshes

Figure 2-1: Mesh segmentation results on the full-resolution MIT Animation Dataset [Vla+08].
Each mesh in the dataset contains 20,000 faces (10,000 vertices). We show an example ground
truth segmentation in the bottom-left. In contrast to previous works, which downsample each
mesh by more than 10×, we efficiently process dense meshes both at train and test time.

We start by considering a deep learning pipeline that operates on 3D geometry as input. We focus

on a shape representation that is common in many applications and downstream tasks and for

which large datasets are readily available—the triangle mesh. To this end, we propose an encoder

that uses machinery from spectral geometry processing to learn features on meshes.

2.1 Introduction

Data-driven algorithms have altered the way we approach problem-solving in computer graph-

ics. Machine learning tools garner top performance for tasks like image editing, user interaction,

This chapter includes material from the following publication: [SS21].

15

image synthesis, and layout, supported by large, well-curated datasets. Yet, while learning tools

for areas like computational photography and rendering are widely adopted, another branch of

graphics has been resistant to change: mesh-based shape analysis.

Numerous technical challenges preclude modern learning methods from being adopted for

meshes. Deep learning—arguably the most popular recent learning methodology—relies on reg-

ularity of the data and differentiability of the objective function for efficiency. For example,

convolutional neural network (CNN) training is built on high-throughput processing of images

through convolution and per-pixel computations to obtain gradients with respect to network

weights, required for stochastic gradient descent.

Meshes, a primarymeans of representing geometry in graphics, defy the considerations above.

They come as sparse, irregular networks of vertices varying in number; the same piece of geome-

try easily can be represented by multiple meshes and at multiple resolutions/densities. Advances

in graph neural networks (GNNs) have as a byproduct helped advance mesh processing, but typ-

ical graphs in geometry processing are fundamentally different from those in network science—

vertices have low valence, are related through long chains of edges, can be connected in many

roughly-equivalent ways, and can be deformed through rigid motions and isometries.

The end result is that mesh-based learning architectures often contort input data to make

it compatible with existing learning toolkits. Restricting to GPU-parallel, regularly-structured

computation is a vast limitation for mesh analysis. For example, while geometry processing al-

gorithms frequently rely on inversion and eigenanalysis of sparse matrices, these operations are

hardly compatible with deep learning. Instead, mesh-based learning algorithms differ from suc-

cessful non-learning geometry processing algorithms, relying on easily differentiated/parallelized

local operations.

In this chapter, we ask whether we can invert this relationship: Rather than inventing new

data streams for geometry processing to suit existing learning algorithms, canwe develop learning

methodologies from successful geometry processing techniques?

We target applications in shape analysis using a prevalent tool in that domain, spectral geome-

try. Myriad shape analysis algorithms follow a similar template, building a positive (semi)definite

matrix whose sparsity pattern is inherited from the mesh and then using its spectral structure

to infer information about meshed geometry. Some examples include the Laplacian operator,

16

the bilaplacian operator, the Dirac operator, and modal analysis. Our broad goal is to learn the

entries of this operator as functions of local geometry.

Unlike past work, however, we observe that classical shape analysis relies on near-zero eigen-

values of these operators (and the corresponding eigenvectors); high-frequency information is

discarded. This is a key reason why classical geometry processing algorithms involve sparse ma-

trix inversion and partial computation of eigenvalues. Partial eigenvector computation from a

sparse matrix, however, is incompatible with most existing learning pipelines, so learning algo-

rithms that use low-order eigenanalysis typically precompute the relevant eigenvectors from a

fixedoperator. Approaches to operator learningworkwith operator-vector products (rather than

inverting the operator), restrict to a pre-computed basis, or compute the full spectrum as a dense

matrix, which is prohibitive for large meshes.

In this chapter, we approximately differentiate through sparse operator construction for one

class of operators motivated by discrete differential geometry. As a result, we can learn operators

whose entries are functions of local geometry, which togethermodify the spectral structure of the

operator—a global computation. Our method is competitive with existing mesh-based learning

tools while being implemented from standard components of the geometry processing toolkit,

and we show how to handle boundary conditions and vector-valued data.

We make some unconventional design decisions that resemble geometry processing rather

than deep learning. For instance, our spectral computation and operator construction are imple-

mented using sparse linear algebra on the CPU, and we implement geometry processing-specific

strategies for data augmentation that promote resolution independence. These decisions do not

hamper efficiency of our method relative to past work.

Contributions. We present a lightweight model for learning from triangle meshes, with or with-

out boundary. Contributions include:

• a learnable class of sparse operators on meshes built from standard constructions in discrete

exterior calculus;

• parallelizable algorithms for differentiating eigencomputation from these operators, including

approximate backpropagation without sparse computation;

17

• end-to-end architectures for learning per-element or per-mesh features starting from mesh ge-

ometry without additional features;

• simple strategies for data augmentation andother practical techniques to improve performance

of our method; and

• experiments demonstrating effectiveness in shape analysis tasks, including the generalization of

ourmodel to high-resolutionmeshes that are too dense to be compatible with relatedmethods.

2.2 Related work

Machine learning from geometry is becoming a popular subfield of graphics and vision. Bron-

stein et al. [Bro+17] provide a broad overview of challenges in this discipline; here, we focus on

work directly related to our task of learning frommeshed geometry.

2.2.1 Spectral Shape Analysis

Our method is built on ideas from spectral geometry, which captures shape properties through

the lens of spectral (eigenvalue/eigenvector) problems. Wang and Solomon [WS19] provide a

comprehensive introduction to this approach to geometry processing.

The Laplace–Beltrami (or, Laplacian) operator is ubiquitous in spectral geometry process-

ing. Most relevant to our work, numerous per-vertex and per-mesh features have been built from

Laplacian eigenvalues and eigenvectors, including the global point signature [Rus07], the heat

kernel signature [SOG09], the wave kernel signature [ASC11], and the heat kernel map [Ovs+10].

These descriptors underlie algorithms for tasks as varied as symmetry detection [OSG08], corre-

spondence [Ovs+12], shape recognition [RWP06; BB10], and shape retrieval [Bro+11]—among

others.

TheLaplacian is popular given itsmultiscale sensitivity to intrinsic geometry, but recentwork

proposes replacements sensitive to other aspects of geometry like extrinsic deformation. Exam-

ples include the Dirac operator [LJC17; Ye+18], modal analysis [Hil+12; Hua+09], the Hamilto-

nian [CPK18], the curvature Laplacian [LZ07], the concavity-aware Laplacian [Au+11; Wan+14],

the volumetric Laplacian [Rav+10], and the Dirichlet-to-Neumann operator [Wan+18d]. Other

18

works add invariances to theLaplacian, e.g., to local scaling [BK10]or affinedeformation [Rav+11],

while others incorporate local features like photometric information [Kov+11; Spa+12]. Nearly

all these algorithms—with the notable exception of volumetric methods [Rav+10; Wan+18d]—

follow the same outline: Build an operator matrix whose sparsity pattern is inherited from the

edges of a triangle mesh and construct features from its eigenvectors and eigenvalues; a widely-

used strategy of truncation approximates spectral features using partial eigeninformation, usually

the eigenvalues closest to 0.

Other spectral methods use or produce vectorial data, working with operators that manipu-

late tangential fields. Vector diffusion operators move information along a manifold or surface

while accounting for parallel transport [SW12; SSC19]. The Killing operator also has been ap-

plied to intrinsic symmetry detection [Ben+10], segmentation [Sol+11b], deformation [Sol+11a;

Cla+17], and registration/reconstruction [CW13; Sla+17]. These methods again analyze a sparse

operator built from local features and mesh structure, although there is less agreement on the

discretization of operators acting on vector-valued data [GDT16].

Spectral representations of geometry can be “complete” in the sense that a shape’s intrinsic

structure or embedding can be reconstructed from the eigenvalues and eigenvectors of certain op-

erators. For example, the discrete Laplacian determines mesh edge lengths [Zen+12], and a modi-

fied operator adds the extrinsic information needed to obtain an embedding [Cor+17]. [Bos+15a;

Cor+17; Cos+19] solve related inverse problems in practice.

Transitioning to the next section, an early machine learning method by Litman and Bron-

stein [LB13] uses regression to learn spectral descriptors on meshes through learnable functions

of Laplacian eigenvalues. This method does not learn the operator but rather the way per-vertex

features are constructed from Laplacian eigenvalues. Henaff, Bruna, and LeCun [HBL15] pro-

pose a similar approach on graphs.

We attempt to generalize many of the methods above. Rather than defining a “bespoke” op-

erator and mapping from eigeninformation to features for each new task, however, we learn an

operator from data.

19

2.2.2 Neural Networks on Meshes

Many papers propose algorithms for learning from meshes and other geometric representations.

Here, we summarize past approaches for learning features from meshes, although specialized

methods for mesh-based learning appear in tasks like generative modeling [Liu+20; Her+20],

meshing [SO20b], and reconstruction [Gao+20; Han+20].

Learning fromgraphs. Since trianglemeshes are structuredgraphs, algorithms for learning from

graphs inspired approaches to learning from meshes. Indeed, graph neural networks (GNNs)

[KW17] are often used as baselines for geometric learning.

Spectral domain. The graph analog of spectral geometry employs Laplacian matrices that act

on per-vertex functions. Graph Laplacians provide a linear model for aggregating information

between neighboring vertices. Spectral networks [Bru+14] project per-vertex features onto a low-

frequency Laplacian eigenbasis before applying a learned linear operator, followed by a per-vertex

nonlinearity in the standard basis; convolution on images can be understood as a spectral filter,

so these networks generalize image-based convolutional neural networks (CNNs). Subsequent

work accelerated learning and inference from spectral networks, often using matrix functions

in lieu of computing a Laplacian eigenbasis, e.g., via Chebyshev polynomials [DBV16], random

walks [AT16], or rational functions [Lev+18].

Spatial domain. Many mesh-based learning methods operate in the “spatial domain,” relating

vertices to their neighbors through constructions like local parameterization or tangent plane

approximation. Thesemethods often can be understood asGNNswith geometrically-motivated

edge weights.

Startingwith [Mas+15],manymethods define convolution-like operationswithin local neigh-

borhoods by parameterizing vertices and their neighborhoods. A challenge is orienting the con-

volution kernel, since the tangent plane is different at every point; strategies include taking a

maximumover all possible orientations [Mas+15; Sun+20], dynamically computingweights from

neighboring features [VBV18], aligning toprincipal curvatures [Bos+16], learningpseudo-coordinate

functions represented asmixtures ofGaussians [Mon+17], projectingonto tangentplanes [Tat+18],

20

sorting nearby vertices based on feature similarity [Wan+18c], aligning to a 4-symmetry field

[Hua+19], andweighting bynormal vector similarity [Son+20] or directional curvature [He+20].

These and othermethodsmust also define ameans of representing localized convolution ker-

nels. Many choices are available, including localized spectral filters [Bos+15b], B-splines [Fey+18],

Zernikepolynomials [Sun+20],wavelets [SDL18], and extrinsicEuclidean convolution [Sch+20].

Additional machinery is needed to compute vectorial features or relate tangent kernels at dif-

ferent vertices—a problem related to choosing a canonical orientation per vertex. Parallel trans-

port is a choice motivated by differential geometry [Yan+20], which can be combined with cir-

cular harmonics [WEH20] or pooling over multiple coordinates [PO18] to avoid dependence on

a local coordinate system. Yang et al. [Yan+20] employ locally flat connections for a similar pur-

pose. Mitchel, Kim, and Kazhdan [MKK21] propose to aggregate features by considering each

neighbor’s own coordinate frame rather than picking a single local parameterization.

SimpleGNN layers like [KW17] communicate information only amongneighboring vertices.

This small receptive field—inherited by severalmethods above—is a serious challenge for learning

frommeshes, which are sparse graphs for which a single such layer becomes more andmore local

as resolution increases. This issue creates dependency of performance on mesh resolution.

Mesh-based constructions. While it is valid to interpret meshes as graphs, this perspective ne-

glects the fact thatmeshes are highly-structured relative to graphs in other disciplines; a few learn-

ing algorithms leverage this additional structure to engineermesh-specific convolutional-style lay-

ers. The popular MeshCNN architecture [Han+19] learns edge features and performs pooling

based on edge collapse operations. PD-MeshNet [Mil+20a] augments the graph of mesh edges

with the graph of dual edges capturing triangle adjacency, with pooling techniques inspired by

mesh simplification and dynamic local aggregation using attention.

Global parameterization. Surface parameterization is a standard technique for texture map-

ping; somemethods parameterizemeshes into an image domain onwhich standardCNNs canbe

used for learning and inference from pushed-forward features. Sinha, Bai, and Ramani [SBR16]

pioneered this approach using geometry images [GGH02] for parameterization. Maron et al.

[Mar+17] use seamless toric covers, conformallymapping four copies of a surface into a flat torus;

thisworkwas extended byHaim et al. [Hai+19] to general covers to reduce distortion. Rendering-

21

based techniques can also be understood as simple parameterizations onto the image plane, e.g.,

using panoramic [Shi+15; STP17] or multi-view [Su+15; Wei+16; Kal+17] projections.

Fixed operator methods. Some methods use operators on surfaces to construct convolution-

like operations. Surface Networks [Kos+18b] use discrete Laplacian and Dirac operators as edge

weights in GNNs. Yi et al. [Yi+17] define kernels in Laplacian eigenbases, including spectral pa-

rameterizations of dilated convolutional kernels and transformer networks. Qiao et al. [Qia+20]

use Laplacian spectral clustering to define neighborhoods for pooling.

Learned operators. Some pastmethods learn relevant differential operators to a geometric learn-

ing task. Closest to ours,Wang et al. [Wan+19] learn a parameterized sparse operator for geometry

processing; see Section 2.4 for comparison of our operator to theirs. Their layers simulate itera-

tions of algorithms, like the conjugate gradient method, by applying their operator, limiting its

receptive field to the number of layers. In contrast, we explicitly perform eigendecomposition

in our differentiable pipeline, allowing us to engineer the inductive bias inspired by the Hodge

Laplacian. Similar discretizations are found inmethods like [ET20] for learning PDEs fromdata;

this method uses algebraic multigrid to increase the receptive field.

Sharp et al. [Sha+22] propose a “learned diffusion layer” inwhich features are diffused along a

geometric domain via the isotropic heat equationwith learned amount of diffusion; they include

diffusion time as a learnable parameter. Similarly to [Bru+14], their diffusion is implemented

in a fixed low-frequency Laplacian eigenbasis, computed during learning/inference. Additional

features incorporate anisotropy via inner products of spatial gradients. Unlike ourwork, they use

a prescribed Laplacian operator.

Other. We mention a few other methods for learning from meshes that do not fall into the

categories above. Xu, Dong, and Zhong [XDZ17] present a pipeline that combines purely local

and mesh-wise global features; Feng et al. [Fen+19] also propose extracting purely local features.

Lim et al. [Lim+18] apply recurrent neural networks (RNNs) to compute vertex features after

unrolling local neighborhoods into prescribed spiral patterns. Deep functional maps [Lit+17]

largely rely on precomputed features for geometric information, although some recent efforts

bring this correspondence method closer to end-to-end [DSO20; SO20a].

22

!!
"
!"

" # "
$! # $"
" # "

! "! # $
"! # ! $
$
% % % &

Figure 2-2: Data flow in HodgeNet; yellow boxes contain learnable parameters.

2.3 Overview

Figure 2-2 gives an overview of our HodgeNet architecture for learning from triangle meshes.

The boxes highlighted in yellow have learnable parameters, while the remaining boxes are fixed

computations.

Our goal is to learn an operator and associated spectral descriptor for a given learning-from-

meshes task. As with most methods, the learning stage uses stochastic gradient descent to opti-

mize for model parameters, which are fixed during inference.

Our model inputs a triangle mesh𝛭 = (𝑉, 𝛦, 𝛵) and constructs three objects:

• a combinatorial differentialmatrix 𝑑 ∈ {−1, 0, 1}|𝛦|×|𝑉|,

• a diagonal 0-formHodge star matrix ⋆0 ∈ ℝ|𝑉|×|𝑉|, and

• a diagonal 1-form Hodge star matrix ⋆1 ∈ ℝ|𝛦|×|𝛦|.

The matrix 𝑑 is a fixed function of𝛭, while ⋆0, ⋆1 are learnable functions of the local geometry

around mesh vertices.

23

HodgeNet then computes the 𝑘 eigenvectors 𝑥𝑖 of the semidefinite Laplacian-type matrix

𝐿 = ⋆−10 𝑑⊤ ⋆1 𝑑 whose eigenvalues 𝜆𝑖 are closest to zero. Finally, per-vertex or per-mesh features

are gathered from {(𝑥𝑖, 𝜆𝑖)} using learnable formulas that generalize the form of popular spectral

features like the heat kernel signature.

During training, we need to differentiate our loss function through the steps above. Most

of the operations above are simple nonlinearities that can be differentiated using standard back-

propagationmethods. We show in Section 2.5 how to obtain approximate derivatives of the eigen-

problem efficiently.

2.4 Operator construction

HodgeNet relies on a parameterized class of learnable operators whose entries are functions of

local geometry. The basis of our construction, designed to encapsulate operator constructions in

spectral geometry, resembles that proposed byWang et al. [Wan+19], with the key difference that

we expose per-edge and per-vertex features using diagonal Hodge star operators; this difference

greatly simplifies our backpropagation procedure in Section 2.5. In Section 2.4.2, we also show

how to generalize this construction for vectorial operators.

2.4.1 Operator

Given an oriented manifold mesh𝛭 = (𝑉, 𝛦, 𝛵) (optionally with boundary) with vertices 𝑉 ⊂
ℝ3, edges 𝛦 ⊂ 𝑉 × 𝑉, and oriented triangles 𝛵 ⊂ 𝑉 × 𝑉 × 𝑉, HodgeNet constructs a positive

(semi)definite operatormatrix𝐿 ∈ ℝ|𝑉|×|𝑉|whose spectral structurewill be used for amesh-based

learning task.

Inspired by the factorization of the Laplacian in discrete exterior calculus [Des+05], we pa-

rameterize 𝐿 as a product:
𝐿 = ⋆−10 𝑑⊤ ⋆1 𝑑. (2.1)

24

Here, 𝑑 ∈ {−1, 0, 1}|𝛦|×|𝑉| is the differential operator given by

𝑑𝑒𝑣 = {
1 if 𝑣 = 𝑣2

−1 if 𝑣 = 𝑣1
0 otherwise,

where 𝑒 = (𝑣1, 𝑣2) is an oriented edge.
While 𝑑 is determined bymesh topology, the diagonalHodge star matrices ⋆0 ∈ ℝ|𝑉|×|𝑉| and

⋆1 ∈ ℝ|𝛦|×|𝛦| are learnable functions of localmesh geometry. To construct ⋆0, ⋆1, we input𝐷 per-

vertex features 𝐹 ∈ ℝ|𝑉|×𝐷. In our experiments, we use positions and normals as the per-vertex

features, exceptwhennoted otherwise. Wedetail the construction of these operators ⋆0(𝐹), ⋆1(𝐹)
from 𝐹 below.

Per-vertex features ⋆0. Our construction of ⋆0(𝐹) imitates areaweight computation for discrete

Laplacians. It takes place in two steps. First, we compute per-triangle features using a learnable

function 𝑓𝛷 ∶ ℝ3𝐷 → ℝ, where 𝛷 contains the parameters of our model. To ensure positive

(semi)definiteness for ⋆0(𝐹) we square 𝑓𝛷. Finally, we gather features from triangles to vertices

by summing and optionally adding a small constant 𝜀 (in practice, 𝜀 = 10−4) to improve condi-

tioning of the eigensystem. Overall, we can write our expression as follows:

(⋆0(𝐹))𝑣𝑣 = 𝜀 +∑
𝑡∼𝑣

𝑓𝛷(𝐹𝑣1 , 𝐹𝑣2 , 𝐹𝑣3)
2 (2.2)

where 𝑡 = (𝑣1, 𝑣2, 𝑣3) ∈ 𝛵 is a triangle with vertices 𝑣1, 𝑣2, 𝑣3 in counterclockwise order. This sum
over 𝑡 has a potentially different number of terms for each vertex, equal to the valence.

If 𝜀 = 0 and 𝑓2𝛷 measures triangle area scaled by 1/3, then ⋆0 becomes the barycentric area

weights matrix often used in finite elements and discrete exterior calculus. We give the details of

our choice of functions 𝑓𝛷 in Section 2.7. Squaring the inner part of (2.2) is one of many ways to

make sure (⋆0)𝑣𝑣 ≥ 0 and could be replaced, e.g., by ReLU activation, but we found empirically

that this simple expression led to the best performance.

Per-edge features ⋆1. The diagonal matrix ⋆1(𝐹) contains per-edge features on its diagonal. Un-
like (2.2), to compute ⋆1(𝐹)we do not need to gather features from a variable-sized ring. Instead,

25

we learn a function 𝑔𝛷 ∶ ℝ4𝐷 → ℝ and, for an interior edge 𝑒 = (𝑣1, 𝑣2), compute

(⋆1(𝐹))𝑒𝑒 = 𝜀 + 𝑔𝛷(𝐹𝑣1 , 𝐹𝑣2 , 𝐹𝑣3 , 𝐹𝑣4)
2, (2.3)

where 𝑣3 and 𝑣4 are opposite the edge 𝑒 as shown to the

right. Weorder 𝑣3 and 𝑣4 so that (𝑣1, 𝑣2, 𝑣3) and (𝑣2, 𝑣1, 𝑣4)
are all consistently oriented. We learn a separate function

�̄�𝛷(𝑣1, 𝑣2, 𝑣3) for boundary edges, since there is only one
opposite vertex in this case.

If 𝜀 = 0 and 𝑔2𝛷 gives the sum of interior angle cotangents at 𝑣3 and 𝑣4, then ⋆1 will be the
famous cotangent Laplacian matrix common in geometry processing. While we have chosen to

square the function 𝑔, thanks to conjugation by 𝑑 in (2.1) this is sufficient but not necessary for

positive (semi)definiteness of 𝐿, and indeed this design choice prevents us from exactly reproduc-

ing the cotangent Laplacian in the presence of obtuse triangles. Our architecture could easily

be adjusted to allow for negative (⋆1)𝑒𝑒 values and hence to reproduce the cotangent Laplacian
operator, but the stability and ease of squaring 𝑔𝛷 to ensure that 𝐿 has no negative eigenvalues

outweighed this largely theoretical consideration.

Discussion. Our parameterizations of 𝐿, ⋆0, and ⋆1 imitate the flow of information used to con-

struct discrete Laplacian operators and related objects. They are readily incorporated into geom-

etry processing pipelines and have familiar sparsity patterns encountered in this discipline.

It is worth acknowledging a few design decisions intended to simplify our framework at the

cost of mathematical structure:

• Squaring 𝑔𝛷 in (2.3) means we cannot reproduce the cotangent Laplacian operator for poorly-

conditioned meshes with negative cotangent weights.

• We arbitrarily choose one of three possible cyclic orderings of the inputs to 𝑓𝛷 in (2.2).

• Similarly, we arbitrarily choose among two orderings of the inputs to 𝑔𝛷 in (2.3): (𝑣1, 𝑣2, 𝑣3, 𝑣4)
and (𝑣2, 𝑣1, 𝑣4, 𝑣3).

All three items above could be addressed at the cost of increasing the complexity of 𝑓𝛷, 𝑔𝛷, but

26

buildingmore general semidefiniteness conditions and/or order invariance didnot bringpractical

benefit.

2.4.2 Vectorial operators

𝐿 discretizes operators that act on functions discretized using one value per vertex of a triangle

mesh. We also can discretize operators acting on vector-valued functions with a value in ℝ𝑘 per

vertex by adjustmenting our construction. For example, for planar triangle meshes and 𝑘 = 2we
can reproduce the Killing operator described in [Sol+11a; Cla+17]; for 𝑘 = 4 we can mimic the

Dirac operator used for shape analysis by Liu, Jacobson, and Crane [LJC17].

To extend to vectorial operators, we use a 𝑘|𝛦| × 𝑘|𝑉| block version of 𝑑 whose blocks are

given as follows:

𝑑𝑒𝑣 = {
𝛪𝑘×𝑘 if 𝑣 = 𝑣2
−𝛪𝑘×𝑘 if 𝑣 = 𝑣1
0 otherwise,

where 𝛪𝑘×𝑘 denotes the 𝑘 × 𝑘 identity matrix.

We generalize 𝑓𝛷 ∶ ℝ3𝐷 → ℝ𝑘×𝑘 and 𝑔𝛷 ∶ ℝ4𝐷 → ℝ𝑘×𝑘 to output 𝑘 × 𝑘matrices. Then, we

compute ⋆0 and ⋆1 as block diagonal matrices whose elements are as follows:

(⋆0)𝑣𝑣 = 𝜀𝛪𝑘×𝑘 +∑
𝑡∼𝑣

𝑓𝛷(𝐹𝑣1 , 𝐹𝑣2 , 𝐹𝑣3)
⊤𝑓𝛷(𝐹𝑣1 , 𝐹𝑣2 , 𝐹𝑣3) (2.4)

(⋆1)𝑒𝑒 = 𝜀𝛪𝑘×𝑘 + 𝑔𝛷(𝐹𝑣1 , 𝐹𝑣2 , 𝐹𝑣3 , 𝐹𝑣4)
⊤𝑔𝛷(𝐹𝑣1 , 𝐹𝑣2 , 𝐹𝑣3 , 𝐹𝑣4). (2.5)

These definitions generalize our scalar construction for the case of 𝑘 = 1 and still lead to a semidef-

inite matrix 𝐿 = ⋆−10 𝑑⊤ ⋆1 𝑑 ∈ ℝ𝑘|𝑉|×𝑘|𝑉|.

2.5 Differentiable spectral analysis

Now that we have determined the form of our operator 𝐿, we turn the task of using its low-order
eigenvalues and eigenvectors for learning tasks. The key challenge will be to differentiate through

eigenvalue/eigenvector computation, a task we consider below. While general eigencomputation

27

is extremely difficult for learning, we show how our particular form (2.1) for 𝐿 facilitates back-

propagation and reduces dependence on random-access computation.

Recall that a step of training requires evaluating the loss functionℒ and its gradients with

respect to the parameters𝛷of themodel. The loss function is evaluated in a forward pass, and the

gradients are evaluated during backpropagation. Wewill performboth the forward and backward

pass of our model on the CPU so as to take advantage of a sparse solver to compute a set of

eigenvalues/eigenvectors for the operator 𝐿 efficiently. While the computation of our features for

our learning problem aswell as the entirety of backpropogation could be efficiently computed on

the GPU, our model has sufficiently few parameters that we find it unnecessary to transfer data

between GPU and CPU.

2.5.1 The HodgeNet generalized eigenproblem

Our architecture outputs features built from eigenvectors of 𝐿 in (2.1). Recall that 𝐿—and, in

particular, the Hodge stars ⋆0, ⋆1—is built from a matrix 𝐹 ∈ ℝ|𝑉|×𝐷 of per-vertex features:

𝐿 = ⋆0(𝐹)−1𝑑⊤ ⋆1(𝐹)𝑑.

Hence, our features are built from eigenvectors 𝑥𝑖 ∈ ℝ𝑘|𝑉| satisfying

𝐿𝑥𝑖 = 𝜆𝑖𝑥𝑖 ⟺ 𝑑⊤ ⋆1 𝑑𝑥𝑖 = 𝜆𝑖 ⋆0 𝑥𝑖. (2.6)

By construction, 𝑑⊤ ⋆1 𝑑 ≥ 0 and ⋆0 ≥, so 𝜆𝑖 ≥ 0. By convention, we normalize eigenvectors to

satisfy the condition (𝑥𝑖)⊤ ⋆0 𝑥𝑗 = 𝛿𝑖𝑗, possible thanks to symmetry of our operators.

To differentiate our per-vertex features, we need to differentiate the eigenvectors 𝑥𝑖 and eigen-
values 𝜆𝑖 with respect to the parameters 𝛷 of our learned functions 𝑓𝛷, 𝑔𝛷. The expressions in
Section 2.4 for (⋆0)𝑣𝑣(𝐹) and (⋆1)𝑒𝑒(𝐹) are readily differentiated. Hence, for compatibility with

the backpropagation algorithm for differentiation, we need to solve the following problem in-

volving our loss functionℒ:

Given the partial derivatives 𝜕ℒ/𝜕𝜆𝑖 and 𝜕ℒ/𝜕𝑥𝑖𝑗 for all 𝑖, 𝑗, compute the partial derivatives
𝜕ℒ/𝜕(⋆0)𝑣𝑣 and 𝜕ℒ/𝜕(⋆1)𝑒𝑒 for all 𝑣 ∈ 𝑉, 𝑒 ∈ 𝛦.

28

In words, given derivatives of the loss function with respect to the eigenvalues and eigenvectors

of 𝐿, compute the derivatives of the loss function with respect to the Hodge stars.

In general, differentiating through eigenvalue problems is expensive. Libraries like Tensor-

Flow and PyTorch allow for differentiation of computing the full spectrum of a matrix, but

their implementations (1) cannot account for the sparsity structure of our mesh and (2) cannot

target a few eigenvalues close to 0, which are typically the meaningful eigenvalues to compute

in geometry processing applications. Solving the full eigenvalue problem is extremely expensive

computationally, and storing a 𝑘|𝑉| × 𝑘|𝑉|matrix of eigenvectors is prohibitive.

Our pipeline addresses the issues above. We rely on CPU-based sparse eigensolvers during

the forward pass of our network, solving (2.6) only for a subset of eigenvalues. This alleviates

dependence on 𝑘|𝑉| × 𝑘|𝑉| dense matrices and instead only stores the𝛰(𝑘|𝑉|) nonzero entries.

2.5.2 Derivative formulas

The vectorial operator 𝐿 operates on vectors inℝ𝑘 per vertex on amesh. Following Section 2.4.2,

we will use 𝑥𝑖𝑣ℓ to refer to the ℓ-th element (ℓ ∈ {1, … , 𝑘}) of entry 𝑣 (𝑣 ∈ 𝑉) of the 𝑖-th eigen-

vector of 𝐿. We use ⋆0𝑣ℓ𝑚 to refer to the element (ℓ, 𝑚) of the 𝑘 × 𝑘 block of ⋆0 at vertex 𝑣 ∈ 𝑉.
More generally, we will use subscripts to refer to matrix elements and superscripts to index over

eigenvalues.

Define the following tensors:

𝑦𝑖𝑒ℓ ∶= ∑
𝑣∈𝑉

𝑑𝑒𝑣𝑥𝑖𝑣ℓ

𝛭𝑖𝑗 ∶= {
(𝜆𝑖 − 𝜆𝑗)−1 if 𝑖 ≠ 𝑗
0 otherwise.

𝛮𝑖𝑗 ∶= {
𝜆𝑖/(𝜆𝑗−𝜆𝑖) if 𝑖 ≠ 𝑗
−1/2 otherwise.

We compute 𝑦 during the forward pass as𝑑𝑥 and cache the result for use during backpropagation,
since 𝑑 is a sparse matrix.

Our algorithm relies on the following proposition:

29

Proposition 1 We can backpropagate derivatives of our loss function as follows:

𝜕ℒ
𝜕⋆0𝑤ℓ𝑚

= −∑
𝑖

𝜕ℒ
𝜕𝜆𝑖 𝜆

𝑖𝑥𝑖𝑤ℓ𝑥𝑖𝑤𝑚 +∑
𝑖𝑣𝑛𝑗

𝜕ℒ
𝜕𝑥𝑖𝑣𝑛

𝛮𝑖𝑗𝑥
𝑗
𝑤ℓ𝑥

𝑖
𝑤𝑚𝑥

𝑗
𝑣𝑛

𝜕ℒ
𝜕⋆1𝑒ℓ𝑚

= ∑
𝑖

𝜕ℒ
𝜕𝜆𝑖 𝑦

𝑖
𝑒ℓ𝑦𝑖𝑒𝑚 +∑

𝑖𝑣𝑛𝑗

𝜕ℒ
𝜕𝑥𝑖𝑣𝑛

𝛭𝑖𝑗𝑥
𝑗
𝑣𝑛𝑦𝑗𝑒ℓ𝑦

𝑖
𝑒𝑚

(2.7)

Here, 𝑖, 𝑗 index over the eigenvectors of 𝐿; ℓ, 𝑛, 𝑚 index over vector elements from 1 to 𝑘; 𝑣, 𝑤 are

vertices of the mesh; and 𝑒 is an edge.

We provide a proof in the following section.

The expressions in (2.7)may appear complicated, but in reality they are efficiently computable.

We have eliminated all sparse matrices and inverses from these formulas, which are readily im-

plemented using a one-line call to Einstein summation functions in deep learning toolkits (e.g.,

einsum in PyTorch).

2.5.3 Derivation of derivative formulas

As input, assumewe have amatrix 𝑑 ∈ ℝ|𝛦|×|𝑉| that subtracts per-vertex values alongmesh edges.

Our goal is to learn two operators ⋆0 ∈ ℝ|𝑉|×𝑘×𝑘 and ⋆1 ∈ ℝ|𝛦|×𝑘×𝑘, where 𝑘 is the dimensionality

of the vectorial data.

Suppose 𝑥 ∈ ℝ|𝑉|×𝑘 is a 𝑘-valued function on our domain. Then, the weak form of our

Laplace-type operator acting on 𝑥 can be written 𝑥 ∈ ℝ|𝑉|×𝑘 ↦ ℒ[𝑥] ∈ ℝ|𝑉|×𝑘 where

ℒ[𝑥]𝑣ℓ = ∑
𝑒𝑚𝑤

𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑤𝑚. (2.8)

Similarly, we can define a mass operator as

ℳ[𝑥]𝑣ℓ = ∑
𝑚
⋆0𝑣ℓ𝑚𝑥𝑣𝑚. (2.9)

Throughout this document, we will assume the symmetry properties

⋆0𝑣ℓ𝑚 = ⋆0𝑣𝑚ℓ and ⋆1𝑒ℓ𝑚 = ⋆1𝑒𝑚ℓ. (2.10)

30

In a forward pass, we compute a set of eigenvectors 𝑥𝑖 and eigenvalues 𝜆𝑖 satisfying

ℒ[𝑥𝑖] = 𝜆𝑖ℳ[𝑥𝑖]. (2.11)

Or equivalently, plugging in (2.8) and (2.9), for all 𝑖, 𝑣, ℓwe have

∑
𝑒𝑚𝑤

𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 = 𝜆𝑖∑
𝑚
⋆0𝑣ℓ𝑚𝑥𝑖𝑣𝑚 (2.12)

Because our operators are self-adjoint, we have the following orthogonality relationship:

∑
𝑣ℓ
𝑥𝑗𝑣ℓℳ[𝑥𝑖]𝑣ℓ = 𝛿𝑖𝑗. (2.13)

Or equivalently, plugging in (2.9),

∑
𝑣ℓ𝑚

𝑥𝑗𝑣ℓ ⋆0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 = 𝛿𝑖𝑗. (2.14)

Suppose our learningproblemas an loss functionℒ. During theprocess of backpropagation,

we require derivatives
𝜕ℒ
𝜕𝑥𝑖𝑣𝑗

and 𝜕ℒ
𝜕𝜆𝑖 . (2.15)

In this document, we show how to obtain

𝜕ℒ
𝜕⋆0𝑣ℓ𝑚

and 𝜕ℒ
𝜕⋆1𝑒ℓ𝑚

. (2.16)

Useful identities. We start by deriving some general formulas. We will use prime to denote dif-

ferentiation with respect to a scalar we will determine later; noteℒ andℳ are functions of our

unknowns in the learning problem so we need to be careful taking derivatives.

We’ll first differentiate (2.12). For all 𝑖, 𝑣, ℓwe have

0 = (∑
𝑒𝑚𝑤

𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 − 𝜆𝑖∑
𝑚
⋆0𝑣ℓ𝑚𝑥𝑖𝑣𝑚)

′

=∑
𝑒𝑚𝑤

(𝑑𝑒𝑣 ⋆′1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 + 𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤(𝑥𝑖𝑤𝑚)′) −∑
𝑚
((𝜆𝑖)′ ⋆0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 + 𝜆𝑖 ⋆′0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 + 𝜆𝑖 ⋆0𝑣ℓ𝑚 (𝑥𝑖𝑣𝑚)′)

31

Wemultiply both sides by 𝑥𝑗𝑣ℓ and sum over 𝑣, ℓ to obtain the following:

0 = ∑
𝑒𝑚𝑤𝑣ℓ

𝑥𝑗𝑣ℓ (𝑑𝑒𝑣 ⋆
′
1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 + 𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤(𝑥𝑖𝑤𝑚)′)

−∑
𝑚𝑣ℓ

𝑥𝑗𝑣ℓ ((𝜆
𝑖)′ ⋆0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 + 𝜆𝑖 ⋆′0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 + 𝜆𝑖 ⋆0𝑣ℓ𝑚 (𝑥𝑖𝑣𝑚)′)

= ∑
𝑒𝑚𝑤𝑣ℓ

𝑥𝑗𝑣ℓ (𝑑𝑒𝑣 ⋆
′
1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 + 𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤(𝑥𝑖𝑤𝑚)′)

− (𝜆𝑖)′𝛿𝑖𝑗 − 𝜆𝑖∑
𝑚𝑣ℓ

𝑥𝑗𝑣ℓ (⋆
′
0𝑣ℓ𝑚𝑥𝑖𝑣𝑚 + ⋆0𝑣ℓ𝑚(𝑥𝑖𝑣𝑚)′) by (2.14)

= ∑
𝑒𝑚𝑤𝑣ℓ

𝑥𝑗𝑣ℓ𝑑𝑒𝑣 ⋆
′
1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 +∑

𝑣ℓ
(𝑥𝑖𝑣ℓ)′∑

𝑒𝑚𝑤
𝑑𝑒𝑣 ⋆1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥

𝑗
𝑤𝑚

− (𝜆𝑖)′𝛿𝑖𝑗 − 𝜆𝑖∑
𝑚𝑣ℓ

𝑥𝑗𝑣ℓ (⋆
′
0𝑣ℓ𝑚𝑥𝑖𝑣𝑚 + ⋆0𝑣ℓ𝑚(𝑥𝑖𝑣𝑚)′) reindexing/reshuffling the second term

= ∑
𝑒𝑚𝑤𝑣ℓ

𝑥𝑗𝑣ℓ𝑑𝑒𝑣 ⋆
′
1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 + 𝜆𝑗∑

𝑣ℓ𝑚
(𝑥𝑖𝑣ℓ)′ ⋆0𝑣ℓ𝑚 𝑥𝑗𝑣𝑚

− (𝜆𝑖)′𝛿𝑖𝑗 − 𝜆𝑖∑
𝑚𝑣ℓ

𝑥𝑗𝑣ℓ (⋆
′
0𝑣ℓ𝑚𝑥𝑖𝑣𝑚 + ⋆0𝑣ℓ𝑚(𝑥𝑖𝑣𝑚)′) by (2.12)

= ∑
𝑒𝑚𝑤𝑣ℓ

𝑥𝑗𝑣ℓ𝑑𝑒𝑣 ⋆
′
1𝑒ℓ𝑚 𝑑𝑒𝑤𝑥𝑖𝑤𝑚 + (𝜆𝑗 − 𝜆𝑖)∑

𝑣ℓ𝑚
(𝑥𝑖𝑣ℓ)′ ⋆0𝑣ℓ𝑚 𝑥𝑗𝑣𝑚

− (𝜆𝑖)′𝛿𝑖𝑗 − 𝜆𝑖∑
𝑚𝑣ℓ

𝑥𝑗𝑣ℓ ⋆
′
0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 after reindexing the last term

=∑
𝑒𝑚ℓ

𝑦𝑗𝑒ℓ ⋆
′
1𝑒ℓ𝑚 𝑦𝑖𝑒𝑚 + (𝜆𝑗 − 𝜆𝑖)∑

𝑣ℓ𝑚
(𝑥𝑖𝑣ℓ)′ ⋆0𝑣ℓ𝑚 𝑥𝑗𝑣𝑚 − (𝜆𝑖)′𝛿𝑖𝑗 − 𝜆𝑖∑

𝑚𝑣ℓ
𝑥𝑗𝑣ℓ ⋆

′
0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚, (2.17)

where we define

𝑦𝑗𝑒ℓ ∶= ∑
𝑣
𝑑𝑒𝑣𝑥

𝑗
𝑣ℓ. (2.18)

This leads us to a useful identity:

(𝜆𝑖)′𝛿𝑖𝑗 + (𝜆𝑖 − 𝜆𝑗)⟨(𝑥𝑖)′, 𝑥𝑗⟩0 = ∑
𝑒𝑤

𝑦𝑗𝑒ℓ ⋆
′
1𝑒ℓ𝑚 𝑦𝑖𝑒𝑚 − 𝜆𝑖∑

𝑣ℓ𝑚
𝑥𝑗𝑣ℓ ⋆

′
0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚, (2.19)

where ⟨⋅, ⋅⟩0 denotes an inner product with respect to ⋆0.

32

For one more convenient formula, we can differentiate (2.14) in the case 𝑖 = 𝑗:

0 =∑
𝑣ℓ𝑚

(𝑥𝑖𝑣ℓ ⋆0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚)′

=∑
𝑣ℓ𝑚

(𝑥𝑖𝑣ℓ ⋆′0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 + 2𝑥𝑖𝑣ℓ ⋆0𝑣ℓ𝑚 (𝑥𝑖𝑣𝑚)′) by symmetry of ⋆0

⟹ ⟨𝑥𝑖, (𝑥𝑖)′⟩0 = −
1
2 ∑𝑣ℓ𝑚

𝑥𝑖𝑣ℓ ⋆′0𝑣ℓ𝑚 𝑥𝑖𝑣𝑚 (2.20)

Derivatives w.r.t. ⋆1. We start with the ⋆1 operator. By the chain rule, we know

𝜕ℒ
𝜕⋆1𝑒ℓ𝑚

= ∑
𝑖

𝜕ℒ
𝜕𝜆𝑖

𝜕𝜆𝑖
𝜕⋆1𝑒ℓ𝑚

+∑
𝑖𝑣𝑛

𝜕ℒ
𝜕𝑥𝑖𝑣𝑛

𝜕𝑥𝑖𝑣𝑛
𝜕⋆1𝑒ℓ𝑚

(2.21)

Consider (2.19) with 𝑖 = 𝑗 and differentiating with respect to ⋆1𝑒ℓ𝑚. We find:

𝜕𝜆𝑖
𝜕⋆1𝑒ℓ𝑚

= 𝑦𝑖𝑒ℓ𝑦𝑖𝑒𝑚 (2.22)

Differentiating the eigenvectors is more difficult. We use a projection formula:

𝜕𝑥𝑖𝑣𝑛
𝜕⋆1𝑒ℓ𝑚

= ∑
𝑗
⟨ 𝜕𝑥𝑖
𝜕⋆1𝑒ℓ𝑚

, 𝑥𝑗⟩
0
𝑥𝑗𝑣𝑛 by writing in the 𝑥 basis

= ∑
𝑗≠𝑖

⟨ 𝜕𝑥𝑖
𝜕⋆1𝑒ℓ𝑚

, 𝑥𝑗⟩
0
𝑥𝑗𝑣𝑛 by (2.20)

= ∑
𝑗
𝛭𝑖𝑗𝑥

𝑗
𝑣𝑛𝑦𝑗𝑒ℓ𝑦

𝑖
𝑒𝑚 by (2.19) with 𝑖 ≠ 𝑗, (2.23)

where

𝛭𝑖𝑗 = {
(𝜆𝑖 − 𝜆𝑗)−1 if 𝑖 ≠ 𝑗
0 otherwise.

(2.24)

Plugging these expressions into (2.21),

𝜕ℒ
𝜕⋆1𝑒ℓ𝑚

= ∑
𝑖

𝜕ℒ
𝜕𝜆𝑖 𝑦

𝑖
𝑒ℓ𝑦𝑖𝑒𝑚 +∑

𝑖𝑣𝑛𝑗

𝜕ℒ
𝜕𝑥𝑖𝑣𝑛

𝛭𝑖𝑗𝑥
𝑗
𝑣𝑛𝑦𝑗𝑒ℓ𝑦

𝑖
𝑒𝑚 (2.25)

33

Derivatives w.r.t. ⋆0. Now, we consider the ⋆0 operator. By the chain rule, we have

𝜕ℒ
𝜕⋆0𝑤ℓ𝑚

= ∑
𝑖

𝜕ℒ
𝜕𝜆𝑖

𝜕𝜆𝑖
𝜕⋆0𝑤ℓ𝑚

+∑
𝑖𝑣𝑛

𝜕ℒ
𝜕𝑥𝑖𝑣𝑛

𝜕𝑥𝑖𝑣𝑛
𝜕⋆0𝑤ℓ𝑚

. (2.26)

Consider (2.19) with 𝑖 = 𝑗 and differentiating with respect to ⋆0𝑤ℓ𝑚. We find:

𝜕𝜆𝑖
𝜕⋆0𝑤ℓ𝑚

= −𝜆𝑖𝑥𝑖𝑤ℓ𝑥𝑖𝑤𝑚 (2.27)

Differentiating the eigenvectors is again more difficult. We use a projection formula:

𝜕𝑥𝑖𝑣𝑛
𝜕⋆0𝑤ℓ𝑚

= ∑
𝑗
⟨ 𝜕𝑥𝑖
𝜕⋆0𝑤ℓ𝑚

, 𝑥𝑗⟩
0
𝑥𝑗𝑣𝑛 by writing in the 𝑥 basis

= −12𝑥
𝑖
𝑤ℓ𝑥𝑖𝑤𝑚𝑥𝑖𝑣𝑛 +∑

𝑗≠𝑖
⟨ 𝜕𝑥𝑖
𝜕⋆0𝑤ℓ𝑚

, 𝑥𝑗⟩
0
𝑥𝑗𝑣𝑛 by (2.20)

= −12𝑥
𝑖
𝑤ℓ𝑥𝑖𝑤𝑚𝑥𝑖𝑣𝑛 −∑

𝑗≠𝑖
𝛭𝑖𝑗𝜆𝑖𝑥

𝑗
𝑤ℓ𝑥

𝑖
𝑤𝑚𝑥

𝑗
𝑣𝑛 by (2.19) with 𝑖 ≠ 𝑗

= ∑
𝑗
𝛮𝑖𝑗𝑥

𝑗
𝑤ℓ𝑥

𝑖
𝑤𝑚𝑥

𝑗
𝑣𝑛 (2.28)

where

𝛮𝑖𝑗 = {
− 𝜆𝑖
𝜆𝑖−𝜆𝑗 if 𝑖 ≠ 𝑗

−1
2 otherwise.

(2.29)

Plugging these expressions into (2.26),

𝜕ℒ
𝜕⋆0𝑤ℓ𝑚

= −∑
𝑖

𝜕ℒ
𝜕𝜆𝑖 𝜆

𝑖𝑥𝑖𝑤ℓ𝑥𝑖𝑤𝑚 +∑
𝑖𝑣𝑛𝑗

𝜕ℒ
𝜕𝑥𝑖𝑣𝑛

𝛮𝑖𝑗𝑥
𝑗
𝑤ℓ𝑥

𝑖
𝑤𝑚𝑥

𝑗
𝑣𝑛 (2.30)

2.5.4 Derivative approximation

Herewebriefly address one challenge using Proposition 1 to differentiateHodgeNet. Recall from

Section 2.5.1 that we compute an incomplete set of eigenvectors of 𝐿, far fewer than the largest

possible number. This choice is reasonable for constructing a loss function, which will only de-

pend on this low-order eigenstructure. However, (2.7) requires all eigenvectors of 𝐿 to evaluate

the sums over 𝑗.

34

We use a simple strategy to address this issue. During the forward pass we compute and

cache more eigenvalues/eigenvectors than are needed to evaluateℒ; in practice, we use 2× (see
Section 2.8.5 for validation). Then, in backpropagation we truncate the sums over 𝑗 in (2.7) to

include only these terms. A straightforward argument reveals that the resulting gradient approx-

imation still yields a descent direction forℒ.

The first term in each sum is computable from exclusively the partial set of eigenvalues, im-

plyingwe can exactly differentiateℒwith respect to the eigenvalues 𝜆𝑖; our approximation is only

relevant to the eigenvectors.

2.6 From eigenvectors to features

Recall that our broad task is to design a learnable mapping frommeshes to task-specific features.

So far, we have designed a learnable operator frommesh geometry and provided ameans of differ-

entiating through its eigenvectors/eigenvalues. It is tempting to use the eigenvectors as per-vertex

features, but this is not a suitable choice: The choice of sign ±𝑥𝑖 for each eigenvector is arbitrary.
We return to geometry processing for inspiration. Classical shape descriptors built from op-

erator eigenfunctions circumvent the sign issue by squaring the Laplacian eigenfunctions point-

wise. For instance, the heat kernel signature [SOG09],wave kernel signature [ASC11], and general

learned kernels [LB13] take the form

∑
𝑖
𝑓(�̄�𝑖)𝜓𝑖(𝑝)2,

where �̄�𝑖 is the 𝑖-th eigenvalue and 𝜓𝑖 is the 𝑖-ith eigenvector of the Laplacian. The fact that 𝜓𝑖 is

squared alleviates sign dependence. Similarly, for eigenfunctions of the vectorial vector Laplacian,

sign-agnostic features can be computed from the outer product of the pointwise vector and itself

𝜓𝑖(𝑝)𝜓𝑖(𝑝)⊤ ∈ ℝ𝑘×𝑘 (see, e.g., [SW12, eq. (3.13)]).

Generalizing the hand-designed features above, we construct a sign-agnostic learnable per-

vertex feature as follows. Take 𝑚 to be the number of eigenvectors of 𝐿 we will use to compute

features, and take 𝑛 to be the number of output features. We learn a function ℎ𝛷 ∶ ℝ → ℝ𝑛 and

construct amatrix𝛨 ∈ ℝ𝑚×𝑛whose columns are ℎ(𝜆𝑖) for 𝑖 ∈ {1, … ,𝑚}. Then, for 𝑗 ∈ {1, … , 𝑛},

35

the 𝑗-th output feature at vertex 𝑣 ∈ 𝑉, notated𝐺𝑗
𝑣 , is given by:

𝐺𝑗
𝑣 ∶= ∑

𝑖
𝛨𝑖𝑗 ⋅ (𝑥𝑖𝑣)(𝑥𝑖𝑣)⊤,

where 𝑥𝑖𝑣 denotes the 𝑖-th eigenvector of 𝐿 evaluated at vertex 𝑣 as a 𝑘 × 1 column vector. We

omit the 0 eigenvalue corresponding to the constant eigenfunction. We give our form for ℎ𝛷 in

Section 2.7.

Having computed per-vertex features 𝐺𝑣, we optionally follow a standard max pooling ap-

proach to obtain per-face features

𝐺𝑓 = max
𝑣∼𝑓

𝐺𝑣,

or per-mesh features

𝐺𝛭 = max
𝑣∈𝑉

𝐺𝑣

depending on the learning task at hand. Wemap these features to the desired output dimensions

𝑑 using a learned function 𝑜𝛷 ∶ ℝ𝑛 → ℝ𝑑.

2.7 Additional details and parameters

Wemodel each of𝑓𝛷, 𝑔𝛷, ℎ𝛷, 𝑜𝛷 as anMLPwithbatchnormalization andLeakyReLU[MHN13]

before each hidden layer. 𝑓𝛷 and 𝑔𝛷 each consist of four hidden layers, each of size 32; ℎ𝛷 consists

of four hidden layers, each of size 𝑛; and 𝑜𝛷 consists of two hidden layers, each of size 32, except

for the classification task, where the layers have 64 units. In all experiments, we set vector dimen-

sionality 𝑘 = 4, output feature size 𝑛 = 32, and number of eigenpairs used𝑚 = 32. We use an

additional 32 eigenpairs for improved derivative approximation, as described in Section 2.5.4.

We train ournetworkusing the optimizerAdamW[LH19]with a batch size of 16 and learning

rate of 0.0001. We use gradient clipping with maximum norm of 1.0 to stabilize training. We

implement our pipeline in PyTorch, using SciPy eigsh with ARPACK for solving our sparse

eigenproblem and libigl for mesh processing. We train our models on 128 2.5 GHz CPUs.

36

2.8 Experiments

We demonstrate the efficacy of our method on several shape analysis tasks and provide experi-

ments justifying some of our parameter and design choices. We also compare to state-of-the-art

methods developed for learning on meshes. Other geometric deep learning approaches tend to

use GNNs, ignoring the mesh structure and relying on multiple layers to aggregate global data,

whereas our method uses spectral geometry to infer global information from local features.

2.8.1 Mesh segmentation

Figure 2-3: Segmentation results on the Shape
COSEGdataset. Meshes shownare randomly se-
lected from the test set for each category.

We train our network for mesh segmenta-

tion on four datasets—the Human Body

dataset [Mar+17] and the vase, chair, and

alien categories of the Shape COSEG dataset

[Wan+12]—optimizing cross entropy loss. We

use the same version of the Human Body

dataset as in [Han+19; Mil+20a], which is

downsampled to 2000 faces per mesh. We

evaluate on the test set of the Human Body

dataset, and generate a random 85%-15% train-

test split for each ShapeCOSEG category, as in

[Han+19; Mil+20a]. We train for 100 epochs

(∼ 3 hours), randomly decimating each input mesh to a resolution of 1000-2000 faces and ran-

domly applying anisotropic scaling of up to 5% in each dimension. We then fine-tune by training

for 100 more epochs without decimation or scaling. In the case of the Human Body dataset,

where meshes are not canonically rotated, we also apply random rotations as data augmentation.

We center each mesh about the vertex center of mass and rescale to fit inside the unit sphere.

We report segmentation accuracies in Tables 2.1 and 2.3 and area-weighted segmentation ac-

curacies in Tables 2.2 and 2.4. For fair comparison, as in [Mil+20a], we report accuracies based

on “hard” ground-truth segmentation face labels for MeshCNN [Han+19] rather than “soft”

edge labels; see [Mil+20a, Supplementary Material, Section H] for details regarding the segmen-

37

Table 2.1: Segmentation accuracy on the Human Body test set.

Method # Parameters Accuracy

Ours 31,720 85.03%
PD-MeshNet [Mil+20a] 173,728 85.61%
MeshCNN [Han+19] 2,279,720 85.39%

Table 2.2: Area-weighted segmentation accuracy on Human Body test set.

Method Accuracy

Ours 86.48%
PD-MeshNet [Mil+20a] 86.45%

tation metrics. Our method obtains results comparable to state-of-the-art for each dataset while

requiring significantly fewer learnable parameters. We also show our learned segmentations on

the Human Body dataset in Fig. 2-4 and on Shape COSEG in Fig. 2-3.

2.8.2 High-resolution mesh segmentation

Table 2.5: Segmentation ac-
curacies for random splits of
the full-resolution MIT Ani-
mation Dataset [Vla+08].

Split # Accuracy

1 90.57%
2 86.90%
3 90.02%
4 89.07%
5 90.15%

In contrast to earlier works, our method is capable of training on

dense, non-decimatedmesh data. We demonstrate this by training

a segmentation model on the MIT Animation Dataset [Vla+08],

where each mesh contains 20,000 faces. We pre-initialize our

model with the segmentation model trained on the Human Body

dataset above and train for an additional 30 epochs (∼ 4 hours).
The pre-initialization allows us to avoid training a model from

scratch: our model trained on low-resolution meshes captures

some triangulation-invariant features, making this transfer learn-

ing possible. We train on five random 95%-5% train-test splits and achieve 89.34% mean accuracy.

We report accuracies for each split in Table 2.5 and render Split 1 in Fig. 2-1 and Split 2 in Fig. 2-5.

2.8.3 Mesh classification

We evaluate our method on mesh classification on the downsampled version of the SHREC

dataset [Lia+11], as in [Han+19; Mil+20a], optimizing the standard cross entropy loss. We report

38

Table 2.3: Test segmentation accuracy on Shape COSEG.

Method Vases Chairs Aliens

Ours 90.30% 95.68% 96.03%
PD-MeshNet [Mil+20a] 95.36% 97.23% 98.18%
MeshCNN [Han+19] 92.36% 92.99% 96.26%

Figure 2-4: Mesh segmentation results on the Human Body test set.

our results on two different splits of the dataset—Split 10, where each of the 30 shape categories is

randomly split into 10 test and 10 training examples, and Split 16, where each category is split into

4 test and 16 training examples—in Table 2.6. We train for 100 epochs using decimation to 400-

500 faces, anisotropic scaling, and random rotations as data augmentation and then fine-tune for

another 100 epochs for Split 16 and 200 epochs for Split 10.

2.8.4 Dihedral angle prediction

As a stress test, we demonstrate that ourmethod is capable of learning an operator that is sensitive

to extrinsic geometry. To this end, we propose a synthetic dataset for dihedral angle regression.

Previous methods that rely on computing a Laplacian would necessarily fail at this task, as they

are only aware of intrinsic structure.

We take a regular mesh of a flat square consisting of 100 faces

and crease it down the center at a random angle 𝜃 ∈ [0, 2𝜋], as
shown. Our network learns a two-dimensional vector per mesh,

andwe optimize cosine distance to the ground truth 𝜃. We use the

same hyperparameters as for the other experiments with a batch

size of 32. For this experiment, we only use vertex positions as the input features—we do not

39

Table 2.4: Area-weighted test segmentation accuracy on Shape COSEG.

Method Vases Chairs Aliens

Ours 94.38% 99.22% 97.97%
PD-MeshNet [Mil+20a] 97.49% 97.86% 98.66%

Figure 2-5: Test set mesh segmentations of Split 2 of the full-resolutionMITAnimation Dataset
[Vla+08].

providenormals. After training for just 15minutes, we are able topredict the anglewith an average

error of 0.17∘.

2.8.5 Ablation

Table 2.7: Ablation study of our pa-
rameter choices on segmentation of
the Shape COSEG vases dataset.

Model Accuracy

full 87.78%
no normals 86.26%

no additional eig. 87.44%
𝑘 = 2 79.02%
𝑚 = 16 86.34%
𝑛 = 8 87.08%

We perform an ablation study to justify some the de-

sign and parameter choices in our architecture. In Ta-

ble 2.7, we report test accuracy on the Shape COSEG

vases dataset after 100 epochs of training (without fine-

tuning). The accuracy degrades whenwe do not provide

normals as part of the input mesh features, when we do

not cache any additional eigenpairs for improved deriva-

tive approximation, when we reduce the vector dimen-

sionality 𝑘, when we reduce the learned feature size 𝑛, or when we use fewer eigenpairs 𝑚 for

feature computation.

2.9 Discussion

HodgeNet hasmany features thatmake it an attractive alternative for learning frommeshes. Dur-

ing inference, its structure resembles that of most spectral geometry processing algorithms: con-

40

Table 2.6: Classification accuracy on the SHREC test set.

Method Split 16 Split 10

Ours 99.17% 94.67%
PD-MeshNet [Mil+20a] 99.7% 99.1%
MeshCNN [Han+19] 98.6% 91.0%

struct a useful operator and compute features from its spectrum. Ourmodel is lightweight in the

sense that the learnable functions act only on local neighborhoods, yet our model has a global re-

ceptive field thanks to the eigenvector computation. It has relatively few parameters and can be

evaluated efficiently on the CPU.

This exploratory work suggests many avenues for future research. The most obvious next

step is to extend our model to tetrahedral meshes for volumetric problems; we do not anticipate

any major issues with this extension. We also can use our method’s connection to DEC to make

learnable versions of other discrete differential operators, e.g. ones acting on 𝑘-forms for 𝑘 ≥ 1,
and we can consider other applications of learning on meshes like generative modeling.

Our work also reveals some insight into other learning problems. Our architecture could

easily be applied to graphs rather than triangle meshes by mildly changing the parameterization

of ⋆1 and taking ⋆0 to be the identity matrix; we hence anticipate that there may be some appli-

cations to network analysis and other graph learning problems. Our lightweight differentiation

strategy for eigenvectors may also prove useful in other contexts demanding eigenstructure of

large matrices.

From the broadest perspective, our work demonstrates one ofmany potential applications of

differentiable sparse linear algebra. While ourderivative approximations and specially-formulated

operator provide one way to circumvent development of a general framework for combining

deep learning and linear algebra, a framework coupling sparse linear algebra to deep learning

toolkits would enable a vast set ofmodeling choice and applications currently hamstrung by avail-

able architectures.

41

3

Learning Parametric Shapes

We now move on to deep learning architectures that output interesting and useful geometry. In

this chapter, we consider parametric shapes, which are particularly convenient for applications

like CADormodeling thanks to their intuitive and sparse representation. We show how borrow-

ing intuition from metric geometry can motivate simple objective functions, useful in training

such deep networks.

3.1 Introduction

The creation, modification, and rendering of parametric shapes, such as in vector graphics, is

a fundamental problem of interest to engineers, artists, animators, and designers. Such represen-

tations offer distinct advantages. By expressing shapes as collections of primitives, we can easily

apply transformations and render at arbitrary resolution while storing only a sparse representa-

tion. Moreover, generating parametric representations that are consistent across inputs enables us

to learn commonunderlying structure and estimate correspondences between shapes, facilitating

tools for retrieval, exploration, style/structure transfer, and so on.

It is often useful to generate parametric models from data that do not directly correspond to

the target geometry and contain imperfections or missing parts. These artifacts be the results of

noise, corruption, or human-generated input; often, an artist intends to create a precise geometric

This chapter includes material from the following publications: [Smi+20; SBS21].

42

oversampled undersampled

uniform

(a) (b)

Chamfer Chamfer

Ψsurf Ψalign

Figure 3-1: Drawbacks ofChamfer distance (above) fixedbyour losses (below). In a, samplinguni-
formly in the parameter space of a Bèzier curve (orange) yields oversampling at the high-curvature
area, resulting in a low Chamfer distance to the segments (blue). Our method yields a spatially
uniform representation. In b, two sets of nearly-orthogonal line segments have near-zero Cham-
fer distance despite misaligned normals. We explicitly measure normal alignment.

object but produces one that is “sketchy” and ambiguous. Hence, we turn to machine learning

methods, which have shown success in inferring structure from noisy data.

Convolutional neural networks (CNNs) achieve state-of-the-art results in vision tasks such

as image classification [KSH12], segmentation [LSD15], and image-to-image translation [Iso+17].

CNNs, however, operate on raster representations. Grid structure is fundamentally built into

convolution as a mechanism for information to travel between network layers. This structure

is leveraged to optimize GPU performance. Recent deep learning pipelines that output vector

shape primitives have been significantly less successful than pipelines for analogous tasks on raster

images or voxelized volumes.

A challenge in applying deep learning to parametric geometry is the combination of Eulerian

and Lagrangian representations. CNNs process data in an Eulerian fashion, applying fixed op-

erations to a dense grid; Eulerian shape representations like indicator functions come as values

on a fixed grid. Parametric shapes, on the other hand, use sparse sets of parameters like control

points to express geometry. In contrast to stationary Eulerian grids, this Lagrangian representa-

tion moves with the shape. Mediating between Eulerian and Lagrangian geometry is key to any

learning pipeline for the problems above, a task we consider in detail.

We propose two learning frameworks for predicting parametric shapes, addressing the afore-

mentioned issues.

First, by analytically computing a distance field to the primitives during training, we formu-

late an Eulerian version of Chamfer distance, a commonmetric for geometric similarity [Tul+17;

43

FSG17b; LF04; Gro+18]. Our metric does not require samples from the predicted or target

shapes, eliminating artifacts that emerge due to nonuniform sampling. Additionally, our dis-

tance field enables alternative loss functions that are sensitive to specific geometric qualities like

alignment. We illustrate the advantages of our method over Chamfer distance in Fig. 3-1.

We apply our new framework in 2D to a diverse dataset of fonts, training a network that

takes in a raster image of a glyph and outputs a collection of Bézier curves. This embedding

effectively maps glyphs onto a common set of parameters that can be traversed intuitively. We

use this embedding for font exploration and retrieval, correspondence, and interpolation in a

completely self-supervised setting, without need for human labeling or annotation.

We also show that our approach works in 3D. With surface primitives in place of curves, we

perform abstraction on ShapeNet [Cha+15], outputting parametric primitives to approximate

each input. Our method can produce consistent shape segmentations, outperforming state-of-

the-art deep cuboid fitting of Tulsiani et al. [Tul+17] on semantic segmentation.

While our distance field–based approach is effective for simple parametric primitives, it can-

not be applied to more complex geometry, like parametric patches. To this end, we present a

secondmethod that operates explicitly on the geometry rather than in the parametric domain or

on a sampling of surrounding space.

To test our system, we choose sketch-based modeling as a target application. Converting

rough, incomplete 2D input into a clean, complete 3D shape is extremely ill-posed, requiring

hallucination of missing parts and interpretation of noisy signal. To cope with these ambiguities,

existing systems either rely on hand-designed priors, severely limiting applications, or learn the

shapes from data, implicitly inferring relevant priors [Del+18; Wan+18c; Lun+17]. However, the

output of the latter methods often lacks resolution and sharp features necessary for high-quality

3Dmodeling.

In industrial design, man-made shapes are typically modeled as collections of smooth para-

metric patches (e.g., NURBS surfaces) whose boundaries form the sharp features. To learn such

shapes effectively, we use a deformable parametric template [JZD98]—a manifold surface com-

posed of patches, each parameterized by control points (Fig. 3-6a). This representation enables

the model to control the smoothness of each patch and introduce sharp edges between patches

where necessary.

44

Compared to traditional representations, deformable parametric templates have numerous

benefits for our task. They are intuitive to editwith conventional software, are resolution-independent,

and can bemeshed to arbitrary accuracy. Since only boundary control points are needed, our rep-

resentation has relatively few parameters. Finally, this structure admits closed-form expressions

for normals and other geometric features, which can be used for loss functions that improve re-

construction quality (Section 3.4.2).

Training a model for such representations faces three major challenges: detection of non-

manifold surfaces, structural variationwithin shape categories, and lack of data. We address them

as follows:

Contributions. We present techniques for predicting parametric shapes from 2D and 3D raster

data, including:

• a general distance field loss functionmotivating several self-supervised losses based on a common

formulation;

• loss functions for fitting a patch-based shape representation, inspired by machinery frommet-

ric geometry;

• application to 2D font glyph vectorization, with application to correspondence, exploration,

retrieval, and repair;

• application to 3D surface abstraction, with results for different primitives and constructive solid

geometry (CSG) as well as application to segmentation;

• application to sketch-basedmodeling ofman-made shapes, producing usableCAD-style patch

primitives.

3.2 Related work

Deep shape reconstruction. Reconstructing geometry from one or more viewpoints is crucial in

applications like robotics and autonomous driving [FRR15; Sei+06; Su+15]. Recent deep net-

works can produce point clouds or voxel occupancy grids given a single image [FSG17a; Cho+16],

but their output suffers from fixed resolution.

45

Learning signed distance fields defined on a voxel grid [DQN17; SG18] or directly [Par+19]

allows high-resolution rendering but requires surface extraction; this representation is neither

sparse nor modular. Liao, Donné, and Geiger [LDG18] address the rendering issue by incorpo-

ratingmarching cubes into a differentiable pipeline, but the lack of sparsity remains problematic,

and predicted shapes are still on a voxel grid.

Parametric shapes offer a sparse, non-voxelized solution. Methods for convertingpoint clouds

to geometric primitives achieve high-quality results but require supervision, either relying on ex-

isting labeled data [NLX18; Mo+19; Gao+19] or prescribed templates [Gan+18]. Groueix et al.

[Gro+18] output primitives at any resolution, but their primitives are not naturally parameterized

or sparsely represented. Genova et al. [Gen+19] represent geometry as isosurfaces of axis-aligned

Gaussians. Others [Sun+19; PUG19] develop tailored primitives but use standard Chamfer dis-

tance as the loss objective. We demonstrate and address the issues inherent in Chamfer distance.

Font explorationandmanipulation. Designingor evenfinding a font canbe tedioususing generic

vector graphics tools. Certain geometric features distinguish letters fromone another across fonts,

while others distinguish fonts from one another. Due to these difficulties and the presence of

large font datasets, font exploration, design, and retrieval have emerged as challenging problems

in graphics and learning.

Previous exploration methods organize fonts via crowdsourced attributes [ODo+14] or em-

bed fonts on a manifold using purely geometric features [CK14; Bal+18]. Instead, we leverage

deep vectorization to automatically generate a sparse representation for each glyph. This enables

exploration on the basis of general shape rather than fine detail.

Automatic font generation methods usually fall into two categories. Rule-based methods

[SI10; PFC15] use engineered decomposition and reassembly of glyphs into parts. Deep learning

approaches [Aza+18; USB16] produce raster images, with limited resolution and potential for

image-based artifacts, making them unfit for use as glyphs. We apply our method to edit existing

fonts while retaining vector structure and show vectorization of glyphs from noisy partial data.

Parametric shape collections. As the number of publicly-available 3D models grows, methods

for organizing, classifying, and exploring models become crucial. Many approaches decompose

models intomodular parametric components, commonly relying on prespecified templates or la-

46

beled collections of specific parts [Kim+13; She+12; Ovs+11]. Such shape collections prove useful

in domain-specific applications in design and manufacturing [Sch+17; UIM12]. Our deep learn-

ing pipeline allows generation of parametric shapes to perform these tasks. It works quickly on

new inputs at test time and is generic, handling a variety of modalities without supervision and

producing different output types.

Sketch-based 3D shapemodeling 3D reconstruction from sketches has a long history in graphics.

A survey is beyond the scope of this paper; see [Del+18] or surveys by Ding and Liu [DL16] and

Olsen et al. [Ols+09].

Unlike incremental sketch-based 3D modeling, where users progressively add new strokes

[Che+05; GIZ09; Che+13; IMT99], our method interprets complete sketches, eliminating train-

ing for artists and enabling 3D reconstruction of legacy sketches.

Some systems interpret complete sketcheswithout extra information. This input is extremely

ambiguous thanks to occlusions and inaccuracies. Hence, reconstruction algorithms rely on

strong 3D shape priors. These priors are typically manually created, e.g., for humanoids, animals,

andnatural shapes [Bes+15; Ent+15; IMT99]. Ourwork focuses onman-made shapes, whichhave

characteristic sharp edges and are only piecewise smooth. Rather than relying on expert-designed

priors, we automatically learn category-specific shape priors.

A few deep learning approaches address sketch-based modeling. Nishida et al. [Nis+16] and

Huang et al. [Hua+17] train networks to predict procedural model parameters that yield detailed

shapes from a sketch. These methods produce complex high-resolution models but only for

shapes that can be procedurally generated. Lun et al. [Lun+17] use a CNN-based architecture

to predict multi-view depth and normal maps, later converted to point clouds; Li et al. [Li+17]

improve on their results by first predicting a flow field from an annotated sketch. In contrast, we

output a deformable parametric template, which can be converted to a manifold mesh without

post-processing. Wang et al. [Wan+18a] learn from unlabeled databases of sketches and 3Dmod-

els with no correspondence using an adverserial training approach. Another inspiration for our

research is the work of Delanoy et al. [Del+18], which reconstructs a 3D object as voxel grids; we

compare to this work in Fig. 3-24.

47

3.3 Preliminaries

Let𝛢, 𝛣 ⊂ ℝ𝑛 be twomeasurable shapes. Let𝛸 and𝑌 be two point sets sampled uniformly from

𝛢 and 𝛣. The directed Chamfer distance between𝛸 and 𝑌 is

Chdir(𝛸, 𝑌) =
1
|𝛸| ∑𝑥∈𝛸

min
𝑦∈𝑌

‖𝑥 − 𝑦‖22, (3.1)

and the symmetric Chamfer distance is defined as

Ch(𝛸, 𝑌) = Chdir(𝛸, 𝑌) + Chdir(𝑌,𝛸). (3.2)

These were proposed for computational applications in [Bor84] and have been used as loss func-

tions assessing geometric similarity in learning [Tul+17; FSG17a; LF04; Gro+18].

To relate our proposed loss to Chamfer distance, we define the variational directed Chamfer

distance as

Chvardir(𝛢, 𝛣) =
1

Vol(A) ∫𝛢
inf
𝑦∈𝛣

‖𝑥 − 𝑦‖22 d𝑉(𝑥), (3.3)

with variational symmetric Chamfer distance Ch(𝛢, 𝛣)var defined analogously, extending (3.1)

and (3.2) to smooth objects.

If points are sampled uniformly, under relatively weak assumptions, Ch(𝛸, 𝑌) → 0 if and
only if 𝛢 = 𝛣 as the number of samples grows, making it a reasonable shape matching metric.

Chamfer distance, however, has fundamental drawbacks:

• It is highly dependent on the sampled points and sensitive to non-uniform sampling, as in

Fig. 3-1a.

• It is agnostic to normal alignment. As in Fig. 3-1b, Chamfer distance between a dense set of

vertical lines and a dense set of horizontal lines approaches zero.

• It is slow to compute. For each 𝑥 sampled from𝛢, it is necessary to find the closest 𝑦 sampled

from 𝛣, a quadratic-time operation when implemented naïvely. Efficient structures like 𝑘-d
trees are not well-suited to GPUs.

Our method does not suffer from these disadvantages.

48

3.4 Method

We describe two approaches to designing deep network architectures that output geometry in

the form of parametric shapes. The first (Section 3.4.1) relies on computing distance fields to the

predicted geometry during training. The distance field serves as a convenient intermediate object,

motivating several loss functions. While this approach is effective for learning simple primitives

like Bézier curves or cuboids, computing distance fields becomes infeasible for more expressive

geometry like parametric patches. Thus, in Section 3.4.2 we propose an alternative way for for-

mulating objective functions, relying on a formulation using metric geometry.

3.4.1 Learning parametric shapes using distance fields

We introduce a framework for formulating loss functions suitable for learning parametric shapes

in 2D and 3D; our formulation not only generalizes Chamfer distance but also leads to stronger

loss functions that improve performance on a variety of tasks. We start by defining a general loss

on distance fields and propose two specific losses.

General distance field loss

Given 𝛢, 𝛣 ⊆ ℝ𝑛, let d𝛢, d𝛣 ∶ ℝ𝑛 → ℝ+ measure distance from each point in ℝ𝑛 to 𝛢 and 𝛣,
respectively, d𝛢(𝑥) ∶= inf𝑦∈𝛢 ‖𝑥 − 𝑦‖2. In our experiments, 𝑛 ∈ {2, 3}. Let 𝑆 ⊆ ℝ𝑛 be a bounded

set with𝛢, 𝛣 ⊆ 𝑆. We define a general distance field loss as

ℒ𝛹[𝛢, 𝛣] =
1

Vol(𝑆) ∫𝑥∈𝑆
𝛹𝛢,𝛣(𝑥) d𝑉(𝑥), (3.4)

for some measure of discrepancy 𝛹. Note that we represent 𝛢 and 𝛣 only by their respective

distance functions, and the loss is computed over 𝑆.
Let 𝛷 ∈ ℝ𝑝 be a collection of parameters defining a shape 𝑆𝛷 ⊆ ℝ𝑛. For instance, if 𝑆𝛷

consists of Bézier curves, 𝛷 contains a list of control points. Given a target shape 𝛵 ⊆ ℝ𝑛, we

formulate fitting a parametric shape to approximate 𝛵with respect to𝛹 as minimizing

𝑓𝛹(𝛷) = ℒ𝛹[𝑆𝛷, 𝛵]. (3.5)

49

For optimal shape parameters, �̂� ∶= argmin𝛷 𝑓𝛹(𝛷). We propose two discrepancy measures,

providing loss functions that capture different geometric features.

Surface loss

We define surface discrepancy to be

𝛹surf
𝛢,𝛣 (𝑥)=𝛿{ker d

2
𝛢}(𝑥)d

2
𝛣(𝑥)+𝛿{ker d

2
𝛣}(𝑥)d

2
𝛢(𝑥) (3.6)

where 𝛿{𝛸} is the Dirac delta defined uniformly on𝛸, and ker𝑓 denotes the zero level-set of 𝑓.
𝛹surf > 0 iff the shapes do not match, making it sensitive to local geometry:

Proposition 1 The symmetric variational Chamfer distance between 𝛢, 𝛣 ⊆ ℝ𝑛 is equal to the

surface loss between𝛢 and 𝛣, i.e.,Chvar(𝛢, 𝛣) = ℒ𝛹surf
𝛢,𝛣
.

Unlike Chamfer distance, the discrete version of our surface loss can be approximated efficiently

without sampling points from either the parametric or target shape via evaluation over a regular

grid, as we show in Section 3.4.1.

Normal alignment loss

We define normal alignment discrepancy to be

𝛹align
𝛢,𝛣 (𝑥) = 1 − ⟨∇ d𝛢(𝑥), ∇ d𝛣(𝑥)⟩2. (3.7)

Minimizing𝑓𝛹align aligns the predicted primitives’ normals to those of the target. Following Fig. 3-
1b, if𝛢 contains vertical lines, and 𝛣 contains horizontal lines,ℒ𝛹align

𝛢,𝛣
≫ 0while Ch(𝛢, 𝛣) ≈ 0.

Final loss function

The general distance field loss and proposed discrepancy measures are differentiable with respect

to the shape parameters𝛷, as long as d𝑆𝛷 is differentiable with respect to𝛷. Thus, they are well-

suited to be optimized by a deep network predicting parametric shapes. We discretize (3.4):

ℒ𝛹[𝛢, 𝛣] ≈
1
|𝐺| ∑𝑥∈𝐺

𝛹𝛢,𝛣(𝑥), (3.8)

where𝐺 is a 2D or 3D grid.

50

Bézier curves

3D primitives

one-hot
vector

128x128
image

64x64x64
distance field ResNet18 fully

connected

template
loss

…

F
d

∇d

δ{ker d}

Ψsurf

Ψalign

Figure 3-2: An overview of our pipelines—font vectorization and 3D abstraction.

While we use a voxel grid to compute the integrals in our loss function, the resolution of

the voxel grid only affects quadrature without limiting the resolution of our representation. The

grid dictates howwe sample distance values; the values themselves are derived from a continuous

parametric representation. A small subvoxel change in the geometry will affect the distance value

at multiple discrete voxels. This property is in distinct contrast to representations that only con-

sider the occupancy grid of a shape—the resolution of such representations is strictly limited by

the grid resolution.

For 𝛹surf, we use Smootherstep(1 − d2𝛢 /𝛾2) (with Smootherstep defined as in [EM03]) as

a smooth version of 𝛿{ker d2𝛢} to evaluate the expression on a grid and to avoid discontinuities,

enabling smooth gradients in our optimization. We set 𝛾 to twice the diameter of a voxel. For

𝛹align, we approximate gradients using finite differences.

We minimize 𝑓𝛹 = 𝑓𝛹surf + 𝛼align𝑓𝛹align , determining 𝛼align = 0.01 for all experiments using

cross-validation.

Network architecture and training

Thenetwork takes a 128×128 image or a 64×64×64 distance field as input and outputs a parametric

shape. We encode our input to aℝ256 latent space using a ResNet-18 [He+16] architecture. We

then use a fully connected layer with 256 units and ReLU nonlinearity followed by a fully con-

nected layer with number of units equal to the dimension of the target parameterization. We pass

the output through a sigmoid and rescale it depending on the parameters being predicted. Our

pipeline is illustrated in Fig. 3-2. We train each network on a single Tesla GeForce GTX Titan X

51

GPU for approximately one day, using Adam [KB14] with learning rate 10−4 and batch size 32

for 2D and 16 for 3D.

2D: Bèzier curve networks

We first describe our choice of primitives as well as the computation of their distance fields. We

introduce a template-based approach to allow our network to better handle multimodal data

(different letters) and test several applications.

Primitives. We wish to use a 2D parametric shape primitive that is sparse and expressive and

admits an analytic distance field. Our choice is the quadratic Bèzier curve (which we refer to as

curve), parameterized by control points 𝑎, 𝑏, 𝑐 ∈ ℝ2 and defined by 𝛾(𝑡) = (1 − 𝑡)2𝑎 + 2(1 −
𝑡)𝑡𝑏 + 𝑡2𝑐, for 0 ≤ 𝑡 ≤ 1. We represent 2D shapes as the union of 𝑛 curves parameterized by

𝛷 = {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}𝑛𝑖=1 ⊆ ℝ3𝑛.

Proposition 2 Given a curve 𝛾 parameterized by 𝑎, 𝑏, 𝑐 ∈ ℝ2 and a point 𝑝 ∈ ℝ2, the �̂� ∈ ℝ such

that 𝛾(�̂�) is the closest point on the curve to 𝑝 satisfies the following:

⟨𝛣, 𝛣⟩�̂�3 + 3⟨𝛢, 𝛣⟩�̂�2 + (2⟨𝛢, 𝛢⟩ + ⟨𝛣, 𝑎 − 𝑝⟩)�̂� + ⟨𝛢, 𝑎 − 𝑝⟩ = 0, (3.9)

where𝛢 = 𝑏 − 𝑎 and 𝛣 = 𝑐 − 2𝑏 + 𝑎.

Thus, evaluating the distance to a single curve d𝛾𝑖(𝑝) = ‖𝑝 − 𝛾𝑖(�̂�)‖2 requires finding the
roots of a cubic [QMK06], which we can do analytically. To compute distance to the union of

the curves, we take a minimum: d𝛷(𝑝) = min𝑛𝑖=1 d𝛾𝑖(𝑝).
In addition to the control points, we predict a stroke thickness for each curve. We use this

parameter when computing the loss by “lifting” the predicted distance field, thus thickening the

curve—if curve 𝛾 has thickness 𝑠, we set 𝑑𝑠𝛾(𝑝) = min(𝑑𝛾(𝑝) − 𝑠, 0). While we do not visualize

stroke thickness in our experiments, this approach allows the network to thicken curves to better

match high-frequency filigree (see Fig. 3-3). This thickening is a simple operation in our distance

field representation; sampling-based methods do not provide a natural way to thicken predicted

geometry.

52

Figure 3-3: Glyphswithpredictedboundary curves renderedwithpredicted stroke thickness. The
network thickens curves to account for stylistic details at the glyph boundaries.

(a) Lettter templates (a) Simple templates

Figure 3-4: Font glyph templates. These determine the connectivity and initialize the placement
of the predicted curves.

Templates. Our training procedure is self-supervised, as we do not have ground truth curve an-

notations. To better handle the multimodal nature of our entire dataset with a single network,

we label each training example with its letter, passed as additional input. This allows us to con-

dition on input class by concatenating a 26-dimensional one-hot vector to the input, a common

technique for conditioning [Zhu+17].

We choose a “standard” curve representation per letter, capturing each letter’s distinct geo-

metric and topological features, by designing 26 templates from a shared set of control points. A

template of type ℓ ∈ {A, … ,Z} is a collection of points 𝛵ℓ = {𝑝1, … , 𝑝𝑛} ⊆ ℝ2𝑛 with correspond-

ing connectivity determining how the points define curves. Since our curves form closed loops,

we reuse endpoints.

For glyph boundaries of uppercase English letters, there are three connectivity types—one

loop (e.g., “C”), two loops (e.g., “A”), and three loops (“B”). In our templates, the first loop has

15 curves and the other loops have 4 curves each. We will show that while letter templates (Fig. 3-

4a) better specialize to the boundaries of each glyph, we still achieve good results with simple

templates (Fig. 3-4b). Even without letter-specific templates, our system learns a consistent geo-

metric representation, establishing cross-glyph correspondences purely using self-supervision.

We use predefined templates together with our labeling of each training example for two pur-

poses. First, connectivity is used to compute curve control points from the network output. Sec-

53

ond, they provide a template loss:

ℒtemplate(ℓ, 𝑥) = 𝛼template𝑒(𝑡/𝑠)‖𝛵ℓ − ℎ𝑡(𝑥)‖22, (3.10)

where 𝑠 ∈ ℤ+, 𝛾 ∈ (0, 1), 𝑡 is the iteration number, 𝑥 is the input image, and ℎ𝑡(𝑥) is the network
output at iteration 𝑡. This initializes the network output, such that an input of type ℓ initially
maps to template ℓ. As this term decays, the other loss terms take over. We set 𝛼template = 10 and
𝑠 = 500, though other choices of parameters for which the template term initially overpowers

the rest of the loss also work.

3D: Cuboids and rounded cuboids

We reconstruct 3D surfaces out of various primitives, which allow our model to be expressive,

sparse, and abstract.

Our first primitive is a cuboid, parameterized by {𝑏, 𝑡, 𝑞}, where 𝑏 = (𝑤, ℎ, 𝑑), 𝑡 ∈ ℝ3 and

𝑞 ∈ 𝕊4 a quaternion, i.e., an origin-centered (hollow) rectangular prism with dimensions 2𝑏 to
which we apply rotation 𝑞 and then translation 𝑡.

Proposition 3 Let 𝐶 be a cuboid with parameters {𝑏, 𝑡, 𝑞} and 𝑝 ∈ ℝ3 a point. Then, the signed

distance between 𝑝 and𝐶 is

d𝐶(𝑝) = ‖max(𝑑, 0)‖2 +min(max(𝑑𝑥, 𝑑𝑦, 𝑑𝑧), 0), (3.11)

where 𝑝′ = 𝑞−1(𝑝 − 𝑡)𝑞 using the Hamilton product and 𝑑 = (|𝑝′𝑥|, |𝑝′𝑦|, |𝑝′𝑧|) − 𝑏.

Inspired by [PUG19], we additionally use a rounded cuboid primitive by introducing a radius

parameter 𝑟 and computing the signed distance by dRC(𝑝) = d𝐶(𝑝) − 𝑟.
Aunique advantage of ourdistancefield representation is the ability toperformCSGboolean

operations. Since our distances are signed, we can compute the distance to the union of 𝑛 primi-

tives by taking a minimum over distance fields. With sampling-based methods such as Chamfer

distance optimization, care must be taken to avoid sampling interior faces that are not part of the

outer surface.

54

3.4.2 Learning parametric patches

For learning primitiveswhose distance field cannot be easily computed, we propose an alternative

appraoch. Our learning pipeline outputs a parametrically-defined 3D surface. We describe our

geometric representation (Section 3.4.2), define our loss (Section 3.4.2), and specify our architec-

ture and training procedure (Section 3.4.2).

Representation

Patches. Our surfaces are collections of Coons patches [Coo67], a commonly used and rich sub-

set of NURBS surfaces. A patch is specified by four boundary cubic Bézier curves sharing end-

points (Fig. 3-6a). Each curve has control points 𝑝1, … , 𝑝4 ∈ ℝ3. A Bézier curve 𝑐 ∶ [0, 1] → ℝ3

is 𝑐(𝛾) = 𝑝1(1 − 𝛾)3 + 3𝑝2𝛾(1 − 𝛾)2 + 3𝑝3𝛾2(1 − 𝛾) + 𝑝4𝛾3, and a Coons patch 𝛲 ∶ [0, 1]2 → ℝ3

is

𝛲(𝑠, 𝑡) =(1 − 𝑡)𝑐1(𝑠) + 𝑡𝑐3(1 − 𝑠) + 𝑠𝑐2(𝑡) + (1 − 𝑠)𝑐4(1 − 𝑡)

− (𝑐1(0)(1 − 𝑠)(1 − 𝑡) + 𝑐1(1)𝑠(1 − 𝑡) + 𝑐3(1)(1 − 𝑠)𝑡 + 𝑐3(0)) 𝑠𝑡.
(3.12)

d
cd

Templates. Templates specify patch connectivity. A template consists of the mini-

mal number of control points necessary to define the patches; shared control points

are reused (Figs. 3-6b and 3-6c). We allow the edge of one patch to be containedwithin

the edge of another using junction curves. A junction curve 𝑐𝑑 is constrained to a lie along a parent
curve 𝑑 and is thus parameterized by 𝑠, 𝑡 ∈ [0, 1], such that 𝑐(0) = 𝑑(𝑠) and 𝑐(1) = 𝑑(𝑡).

A template provides hard topological constraints for our surfaces, an initialization of their

geometry, and, optionally, a means for regularization. Templates are crucial in ensuring that the

patches have consistent topology—an approachwithout templates would result in unstructured,

non-manifold patch collections. While our method works using a generic sphere template, we

can define templates per shape category to incorporate category-specific priors. These templates

capture only coarse geometric features and approximate scale. We outline an algorithm for ob-

taining templates below.

55

(b)

(c)

P(0, 0)

P(0, 1)

P(1, 1)

P(1, 0)

P(1, t)

P(s, 1)

P(s, 0)

P(0, t)

(a)

Figure 3-6: Our representation is composed of Coons patches (a) organized into a deformable
template (b). We use the following templates (c, top to bottom, left to right): bottle, knife, guitar,
car, airplane, coffee mug, gun, bathtub, 24-patch sphere, 54-patch sphere.

Algorithmic construction of templates. We design a simple system to construct a template given

as input any collection of cuboids. Such a collection can be computed automatically for a shape

category, e.g., given a segmentation or using self-supervised methods such as [Smi+20; Tul+17;

Sun+19], or easily produced using standard CAD software. We show templates algorithmically

computed from pre-segmented shapes—we obtain a collection of cuboids by taking the bound-

ing box around each connected component of each segmentation class.

(a) (b) (c)

Figure 3-5: Summary of our tem-
plate algorithm. Given a collection of
cuboids (a), we form a quad mesh (b),
and merge faces to get a template (c).

A generic cuboid decomposition cannot be used as a

template, since individual cuboidsmay overlap. We snap

cuboids to an integer lattice, split each face at grid coor-

dinates, and remove overlapping and interior faces to ob-

tain a manifold quad mesh. This mesh typically consists

of many faces, and so, we simplify it. We merge adjacent

quads with a greedy agglomerative algorithm, iterating

over each quad in order of descending area and merging with an adjacent quad as long as the

merge does not result in ill-defined junction curves. We show an example of this process in Fig. 3-

5. Given decompositions of multiple shapes in a category, we use the median model with respect

to Chamfer distance. Since models within a category are aligned, the median provides a rough

approximation of the typical geometry.

Structural variation using templates. For category-specific tem-

plates, we use the fact that template patches are consistently placed

on semantically meaningful parts to account for structural variation. For instance, certain air-

planemodels contain turbines, while others do not. We note which template patches come from

56

cuboids corresponding to turbines, and, during training, only use turbine patches formodels that

contain turbines. This allows training on the entire airplane shape category, effectively using two

distinct templates. At test time, the user can toggle turbines on or off for any output.

Loss

Wefit a collection of patches {𝛲𝑖} to a target mesh𝛭 by optimizing a differentiable loss function.

Below, we describe each term—a reconstruction loss generalizing Chamfer distance, a normal

alignment loss, a self-intersection regularizer, a patch flatness regularizer, and two template priors.

Area-weightedChamfer distance. While it is difficult to both to sample uniformly frompatches

as well as to compute distance fields, we can sample easily from their parametric domain (the

unit square). We again start with variational Chamfer distance, as defined in (3.3), and perform a

change of variables to get the following:

Chvardir(𝛲,𝛭) = 1
Area(𝛲) ∫𝛲

inf
𝑦∈𝛭

d(𝑥, 𝑦) d𝑥 (3.13)

= 1
Area(𝛲)

1
∫
0

1
∫
0

inf
𝑦∈𝛭

d (𝛲(𝑠, 𝑡), 𝑦) |𝐽(𝑠, 𝑡)| d𝑠 d𝑡 (3.14)

= 1
Area(𝛲) ⋅

1
Area(□)

1
∫
0

1
∫
0

inf
𝑦∈𝛭

d (𝛲(𝑠, 𝑡), 𝑦) |𝐽(𝑠, 𝑡)| d𝑠 d𝑡 (3.15)

= 1
Area(𝛲) 𝔼(𝑠,𝑡)∼𝒰□

[inf
𝑦∈𝛭

d(𝛲(𝑠, 𝑡), 𝑦)|𝐽(𝑠, 𝑡)|] (3.16)

=
𝔼(𝑠,𝑡)∼𝒰□

[inf𝑦∈𝛭 d(𝛲(𝑠, 𝑡), 𝑦)|𝐽(𝑠, 𝑡)|]
𝔼(𝑠,𝑡)∼𝒰□

[|𝐽(𝑠, 𝑡)|] , (3.17)

where 𝐽(𝑠, 𝑡) is the Jacobian of 𝛲. We approximate this expression via Monte Carlo integration.

Sincewe can precompute uniformly sampled randompoints from the targetmesh, we do not

need to use area weights for Chvardir(𝛭, 𝛲). Thus, our area-weighted Chamfer distance is

ℒCh(∪𝛲𝑖,𝛭) =
∑𝑖∑(𝑠,𝑡)∈𝑈□

min𝑦∈𝛭 d(𝛲(𝑠, 𝑡), 𝑦)|𝐽𝑖(𝑠, 𝑡)|
∑𝑖∑(𝑠,𝑡)∈𝑈□

|𝐽𝑖(𝑠, 𝑡)|
+
∑𝑥∈𝛭min𝑦∈∪𝛲𝑖 d(𝑥, 𝑦)

|𝛭| , (3.18)

where𝑈□ ∼ 𝒰[0,1]2 . We compute 𝐽𝑖(𝑢, 𝑣) for a patch given its control points in closed-form.

57

Normal alignment. The normal alignment term is computed analogously to Chdir, except that

instead of Euclidean distance, we use d𝛮(𝑥, 𝑦) = ‖𝑛𝑥−𝑛𝑦‖22, where 𝑛𝑥 is the unit normal at 𝑥. For
each point 𝑦 sampled from our predicted surface, we compare 𝑛𝑦 to 𝑛𝑥, where 𝑥 ∈ 𝛭 is closest to

𝑦, and, symmetrically, for each 𝑥′ ∈ 𝛭, we compare 𝑛𝑥′ to to 𝑛𝑦′ , where 𝑦′ ∈ ∪𝛲𝑖 is closest to 𝑥′:

ℒnormal(∪𝛲𝑖,𝛭) =
∑𝑖∑(𝑢,𝑣)∈𝑈□

d𝛮 (NN𝛭(𝛲𝑖(𝑢, 𝑣)), 𝛲𝑖(𝑢, 𝑣)) |𝐽𝑖(𝑢, 𝑣)|
∑𝑖∑(𝑢,𝑣)∈𝑈□

|𝐽𝑖(𝑢, 𝑣)|

+
∑𝑥∈𝛭 d𝛮 (𝑥,NN∪𝛲𝑖(𝑥))

|𝛭| ,
(3.19)

where NN𝑌(𝑥) is the nearest neighbor to 𝑥 in 𝑌 under Euclidean distance.

Intersection regularization. We introduce a collision detection loss to detect patch intersections:

ℒcoll({𝛲𝑖}) = ∑
𝑖≠𝑗

exp (− (min(d(𝒯𝑖, 𝛲𝑗), d(𝒯𝑗, 𝛲𝑖))/𝜀)2) , (3.20)

where𝒯𝑖 is a triangulation of patch 𝛲𝑖, and 𝛲𝑖 is a set of points sampled from patch 𝛲𝑖. To trian-
gulate a patch, we take a fixed triangulation of the parameter space (a unit square) and compute

the image of each vertex under the Coons patch map, keeping the original connectivity. With a

small 𝜀 = 10−6, this expression is a smooth indicator for when two patches are intersecting. For

a pair of adjacent patches or those that share a junction, we truncate one patch at the adjacency

before evaluating the loss.

Patchflatness regularization. Tohelppatches to align to smooth regions and sharp creases to fall

on patch boundaries, we define a patch flatness regularizer, which discourages excessive curvature

by regularizing each Coons patch map 𝛲 ∶ [0, 1] × [0, 1] → ℝ3 to be close to a linear map. For

each patch, we sample points𝑈□ in parameter space, compute their image𝛲(𝑈□), and fit a linear
function using least-squares. Thus, �̂�(𝑈□) = 𝛢𝑈□ + 𝑏 ≈ 𝛲(𝑈□) for some 𝛢, 𝑏. We define the

patch flatness loss as

ℒflat({𝛲𝑖}) =
∑𝑖∑(𝑢,𝑣)∈𝑈□

‖�̂�𝑖(𝑢, 𝑣) − 𝛲𝑖(𝑢, 𝑣)‖22|𝐽𝑖(𝑢, 𝑣)|
∑𝑖∑(𝑢,𝑣)∈𝑈□

|𝐽𝑖(𝑢, 𝑣)|
. (3.21)

58

128x128
image

ResNet-18 fully
connected

patch flatness losspatch flatness loss

collision losscollision loss

template normals losstemplate normals loss

normal alignment lossnormal alignment loss

area-weighted Chamfer lossarea-weighted Chamfer loss

Coons
patches

template

ground truth

symmetry losssymmetry loss

(a) (b)

Figure 3-7: An overview of our data generation and augmentation (a) and learning (b) pipelines.

Template normals regularization. For categories where a template is available, we not only ini-

tialize the networkwith the template geometry but also regularize the output using template nor-

mals. This favorably positions patch seams andprevents patches from sliding over high-curvature

regions:

ℒtemplate({𝛲𝑖}, {𝛵𝑖}) =
∑𝑖∑(𝑢,𝑣)∈𝑈�

‖𝑛𝛲𝑖(𝑢,𝑣) − 𝑛𝛵𝑖‖
2
2|𝐽𝑖(𝑢, 𝑣)|

∑𝑖∑(𝑢,𝑣)∈𝑈�
|𝐽𝑖(𝑢, 𝑣)|

, (3.22)

where 𝑛𝛵𝑖 is the normal vector of the 𝑖th template patch.

Global symmetry. Man-made shapes often exhibit global bilateral symmetries. Enforcing sym-

metry is difficult in, e.g., meshes or implicit surfaces. In contrast, after computing a template’s

symmetry planes, we enforce symmetric positions of the corresponding control points as an ad-

ditional loss term:

ℒsym(∪𝛲𝑖) =
1
|𝑆| ∑

(𝑖,𝑗)∈𝑆
‖(𝛲𝑖

𝑥 − 𝑎, 𝛲𝑖
𝑦 , 𝛲𝑖

𝑧) − (𝑎 − 𝛲
𝑗
𝑥 , 𝛲𝑗

𝑦 , 𝛲𝑗
𝑧)‖22, (3.23)

where 𝑆 contains index pairs of symmetric control points (𝛲𝑖, 𝛲𝑗). In the formula, we assume,

without loss of generality, symmetry plane 𝑥 = 𝑎. We use this to enforce symmetrical reconstruc-

tion of airplanes and cars.

Deep learning pipeline

The final loss that we optimize is

ℒ({𝛲𝑖},𝛭) = ℒCh(∪𝛲𝑖𝛭) + 𝛼normalℒnormal(∪𝛲𝑖𝛭)

+ 𝛼flatℒflat({𝛲𝑖}) + 𝛼collℒcoll({𝛲𝑖}) + 𝛼templateℒtemplate({𝛲𝑖}, {𝛵𝑖}) + 𝛼symℒsym(∪𝛲𝑖).
(3.24)

59

For models scaled to fit in a unit sphere, we use 𝛼normal = 0.008, 𝛼flat = 2, and 𝛼coll = 0.00001 for
all experiments, and 𝛼template = 0.0001 and 𝛼sym = 1 for experiments that use those regularizers.

Our network inputs one or more 128×128 images and outputs patch parameters. The ar-

chitecture is ResNet-18 [He+16] followed by hidden layers with 1024, 512, and 256 units, and an

output layer with size equal to the output dimension. Final layer weights are initialized to zero

with bias equal to the template parameters. For multi-view input, we encode each image and do

max pooling over the latent codes. We use ReLU and batch normalization after each layer except

the last. We train each network for 24 hours on aTesla V100GPU, usingAdam [KB14] and batch

size 8with learning rate 0.0001. At each iteration, we sample 7,000 points from the predicted and

target shapes. Our pipeline is illustrated in Fig. 3-7b.

3.5 Experiments

Wedemonstrate results of learning parametric shape representations using deep neural networks.

In Sections 3.5.1 and 3.5.2, we use our distance field–based loss functions to output Bézier curves

and simple 3D primitives, respectively. Then, in Section 3.5.3 we use our metric-based approach

to learn expressive patch-based representations.

3.5.1 2D: Font exploration and manipulation

We demonstrate our method in 2D for font glyph vectorization. Given a raster image of a glyph,

our network outputs control points defining a collection of quadratic Bézier curves that approx-

imate its outline. We produce nearly exact vector representations of glyphs from simple (non-

decorative) fonts. From a decorative glyph with fine-grained detail, however, we recover a good

approximation of the glyph’s shape using a small number of Bézier primitives and a consistent

structure. This process can be interpreted as projection onto a common latent space of control

points.

We train our network on the 26 uppercase English letters extracted from nearly 10,000 fonts.

The input is a raster image of a letter, and the target distance field to the boundary of the original

vector representation is precomputed.

60

Ablation study. We demonstrate the benefit of our loss over Chamfer distance as well as the

contribution of each of our loss terms. While having 26 unique templates helps achieve better

results, it is not crucial—we evaluate a network trained with three “simple templates” (Fig. 3-4b),

which capture the three topology classes of our data.

Table 3.1: Comparison between subsets of our full model as well as standard Chamfer distance
andAtlasNet. Average error is Chamfer distance (in pixels on a 128×128 image) between ground
truth and uniformly sampled predicted curves.

Model Average error

Full model (ours) 0.509
No surface term (ours) 1.613

No alignment term (ours) 0.642
Simple templates (ours) 0.641

Chamfer (with letter templates) 0.623
AtlasNet [Gro+18] 5.154

For the Chamfer loss experiment, we use the same hyperparameters as for our method and

sample 5,000 points from the source and target geometry. We initialize the model output to the

full letter templates, like in our full model.

No surface No alignment ChamferInput Full model Simple temp.

Figure 3-8: Ablation study.

We also evaluate on 20 sans-serif fonts,

computingChamfer distance between our pre-

dicted curves and ground truth geometry, sam-

pling uniformly (average error in Table 3.1).

Uniformsampling is a computationally-expensive

and non-differentiable procedure only for eval-

uation a posteriori—not suitable for training.

While it does not correct all of Chamfer dis-

tance’s shortcomings, we use it as a baseline to

evaluate quality. We limit to sans-serif fonts

since we do not expect to faithfully recover lo-

cal geometry. Our full loss outperformsCham-

fer loss, and both our loss terms are necessary. Figure 3-8 shows test set qualitative results.

61

loss value (x10-3)

100

101

105

104

103

102

0 8642

nu
m

. e
xa

m
pl

es

Figure 3-9: Number of examples per quan-
tized loss value.

We demonstrate robustness in Fig. 3-9 by quan-

tizing our loss values and plotting the number of ex-

amples for each value. High loss outliers are gener-

ally caused bynoisy data—they are either not upper-

case English letters or have fundamentally uncom-

mon structure, e.g., a B glyph comprised of just a

single loop.

(a) Plain font glyphs (b) Decorative font glyphs

Figure 3-10: Vectorization of various glyphs. For each we show the raster input (top left,black)
alongwith the vectorization (colored curves) superimposed. When the input has simple structure
(a), we recover an accurate vectorization. For fonts with decorative details (b), our method places
curves to capture overall structure. Results are taken from the test dataset.

Comparison to AtlasNet. In AtlasNet [Gro+18], geometry is reconstructed by training implicit

decoders, which map a point in the unit square to a point on the target surface, optimizing

Chamfer distance. Wemodify theAtlasNet system to our task and demonstrate that ourmethod

method proposes a more effective geometry representation and loss.

AtlasNet represents shapes as points in a learned high dimensional space, which does not

obviously correlate to geometric features. Thus, in contrast to our explicit representation as a

collection of control points, it does not facilitate geometric interpretability. Additionally, their

representations makes it difficult to impose geometric priors—it is unclear how to initialize At-

lasNet to predefined templates, as we do in Section 3.4.1.

For a fair comparison, we train an AtlasNet model that maps points from the boundary of

a circle (rather than the interior of a square) into 2D. We only train on letters with single loop

topology (C, E, F, etc.) and sample 5,000 points. Thus, this setting is comparable to the simple

templates experiment from our ablation.

62

We show results in Fig. 3-11. Although AtlasNet recovers overall structure of the input, it suf-

fers from self-intersections and imprecision not exhibited by our method, even with simple tem-

plates. Likely, these artifacts are due to the fact that AtlasNet exhibits the drawbacks of Chamfer

distance identified in Section 3.3, i.e., non-uniform sampling and lack of sensitivity to normal

alignment. We include a quantitative comparison in Table 3.1. Our method outperforms Atlas-

Net even based on on a uniformly-sampled Chamfer distance metric.

Input Input Full modelFull model Simple templatesSimple templates AtlasNetAtlasNet

Figure 3-11: Comparison to AtlasNet [Gro+18] with a closed loop start shape to our simple tem-
plates and full models. We only train (and test) AtlasNet on letters with a single loop.

Vectorization. For any font glyph, our method generates a consistent sparse vector representa-

tion, robustly and accurately describing the glyph’s structure while ignoring decorative and noisy

details. For simple fonts, our representation is a near-perfect vectorization, as in Fig. 3-10a. For

decorative glyphs, our method produces a meaningful abstraction. While a true vectorization

would contain many curves with a large number of connected components, we succinctly cap-

ture the glyph’s overall structure (Fig. 3-10b).

Ourmethod preserves semantic correspondences. The same curve is consistently used for the

boundary of, e.g., the top of an “I”. These correspondences persist across letters with both full

and simple templates—see, e.g., the “E” and “F” in Figs. 3-10a and 3-10b, and “simple templates”

in Fig. 3-8.

63

Figure 3-12: Nearest neighbors for a glyph in
curve space, sorted by proximity. The query
glyph is in orange.

Retrieval and exploration. Our sparse repre-

sentation can be used to explore the space of

glyphs, useful for artists and designers, with-

out the need for manual labelling or annota-

tion. Treating control points as a metric space,

we can perform Euclidean nearest-neighbor

lookups for font retrieval.

In Fig. 3-12, for each query glyph, we compute its curve representation and retrieve seven

nearest neighbors in curve space. Because our representation captures geometric structure, we

find glyphs that are similar structurally, despite decorative and stylistic differences.

Figure 3-13: User-guided font explo-
ration. At each edit, the nearest glyph
is displayed below.

We can also consider a path in curve space starting at

the curves for one glyph and ending at those for another.

By sampling nearest neighbors along this trajectory, we

“interpolate” between glyphs. As in Fig. 3-14, this pro-

duces meaningful collections of fonts for the same letter

and reasonable results when the start and end glyphs are

different letters.

Nearest-neighbor lookups in curve space also can help find a font matching desired geomet-

ric characteristics. A possible workflow is in Fig. 3-13—through incremental refinements of the

curves the user can quickly find a font.

style
structure

Figure 3-15: Mixing of style (columns)
and structure (rows) of the A glyph.

Style and structure mixing. Our sparse curve represen-

tation describes geometric structure, ignoring stylistic

and decorative details. We leverage this property to warp

a glyph with desired style to the structure of another

glyph (Fig. 3-15).

We first generate the sparse curve representation for

source and target glyphs. Since our representation uses

the same set of curves, we can estimate dense correspon-

dences and use them to warp original vectors of the

64

Figure 3-14: Interpolating between fonts in curve space. The start and end are in orange and blue,
respectively, and the nearest glyphs to linear interpolants are shown in order.

source glyph to conform to the shape of the target. For each point on the source, we apply a

translation that is a weighted sum of the translations from the sparse curve control points in the

source glyph to those in the target glyph.

Repair. Our system learns a strong prior on glyph shape, allowing us to robustly handle noisy

input. In [Aza+18], a generative adversarial network (GAN) generates novel glyphs. The outputs,

however, are raster images, oftenwithnoise andmissing parts. Figure 3-16 showshowourmethod

can simultaneously vectorize and repair GAN-generated glyphs. Compared to a vectorization

tool like Adobe Illustrator Live Trace, we infer missing data based on learned priors, making the

glyphs usable starting points for font design.

Other glyphs. Our method generalizes to more complex input than uppercase English glyphs.

We demonstrate this by training a model to vectorize a Chinese character, which has significant

geometric and topological complexity. We use a template that roughly captures the structure of

the character. Results on several fonts are shown in Fig. 3-17.

65

GAN-generated Adobe IllustratorOurs Our (filled) GAN-generated Adobe IllustratorOurs Our (filled)

Figure 3-16: Vectorized GAN-generated fonts from [Aza+18].

Figure 3-17: Vectorization of a Chinese character.

3.5.2 3D: Volumetric primitive abstraction

We train on the airplane and chair categories of ShapeNet Core V2 [Cha+15], taking as input a

distance field. Thus, our method is fully self-supervised.

Figure 3-18: Cuboid abstractions of airplanes.

Surface abstraction. In Fig. 3-19, for each

ShapeNet chair, we show the our cuboid ab-

straction, our rounded cuboid abstraction,

and the abstraction of [Tul+17]. We show our

cuboid abstractions of ShapeNet airplanes in Fig. 3-18. Each of our networks outputs 16 prim-

66

Input Ours (rounded) Ours (cuboid) Input Ours (rounded) Ours (cuboid)[Tul+17] [Tul+17]

Figure 3-19: Abstractions of test set chairs using our method and the method of [Tul+17].

itives, and we discard cuboids with high overlap using the method of [Tul+17]. The resulting

abstractions capture high-level structures of the input.

Segmentation. Because we place cuboids consistently, we can use them for segmentation. Fol-

lowing [Tul+17], we demonstrate on the COSEG chair dataset. We first label each cuboid pre-

dicted by our network (trained on ShapeNet chairs) with a segmentation class (seat, back, legs).

Then, we generate a cuboid decomposition of each chair and segment according to the nearest

cuboid. We achieve a mean accuracy of 94.6%, exceeding the 89.0% accuracy of [Tul+17].

CSG operations. In Fig. 3-20, we show results of a network that outputs parameters for the

union of eight rounded cuboids minus eight rounded cuboids. For inputs compatible with this

template, we get good results. It is unclear how to achieve unsupervised CSG predictions using

Chamfer loss.

3.5.3 3D: Patch-based CAD modeling

We introduce a pipeline for generating sketch data and train a network that coverts a sketch image

to a patch-based 3D representation. We show results on synthetic and human-drawn sketches,

demonstrate interpolation and quad meshing, compare to prior work, and do an ablation study.

67

Figure 3-20: Chair CSG abstractions using rounded cuboids.

Input

Automatically Computed Model Edited Model

Figure 3-21: Editing a 3D model produced by our method. Because we output 3D geometry as a
collection of consistent, well-placed NURBS patches, edits can be made in conventional CAD
software by simplymoving control points. Here, we refine the trunk of a carwith just a few clicks.

Data preparation

While there exist some annotated datasets of 3Dmodels and corresponding hand-drawn sketches

[Gry+19], such data are unavailable at the deep learning scale. Instead, we generate synthetic

data. Guided by [Col+08], we first render occluding contours and sharp edges using the Arnold

Toon Shader in AutodeskMaya for eachmodel from representative camera views. Although the

contour images capture the main features of the 3D model, they lack some of the ambiguities of

rough hand-drawn sketches [LRS18]. To this end, we vectorize the images using [BS19] and aug-

ment the set of contours by stochastically splitting or truncating curves. Finally, we rasterize each

contour image using different stroke widths and pass it through the pencil drawing generation

model of Simo-Serra, Iizuka, and Ishikawa [SII18]. We illustrate this pipeline in Fig. 3-7a.

Thus, we obtain sketch images paired with 3D models. We train on the airplane, bathtub,

guitar, bottle, car, mug, gun, and knife categories of ShapeNet Core (v2) [Cha+15]. Wemake the

meshes watertight using [HSG18] and normalize them to fit an origin-centered unit sphere.

Real and synthetic sketch reconstruction

We pick a random 10%-90% test-train split for each category and evaluate in Fig. 3-22.

The templates for airplanes, guitars, guns, knives, and cars are generated automatically using

68

Figure 3-22: Results on synthetic sketches. For each category, from top to bottom: input sketch,
output 3D model with sphere template (54 patches), output 3D model with category-specific
template.

69

segmentations of Yi et al. [Yi+16]. For mugs, we start with an automatic template and add a hole

in the handle and a void in the interior. To demonstrate a template with distinct parts, for cars,

we use the segmentation during training, computing Chamfer and normal losses for wheels and

body separately. For bottles and bathtubs, we simply place two and and five cuboids, respectively.

With a generic sphere template, we produce a compact piecewise-smooth surface of com-

parable quality to the more conventional deformable meshes. Our algorithmic construction of

category-specific templates, however, enables higher-quality reconstruction of sharp features.

We demonstrate our method’s ability to incorporate details

from different views. We show our output when given a single

view of an airplane as well as when given an additional view. The

combined model incorporates elements not visible in the original view.

We also test on real sketches. Each artist was asked to

sketch an airplane without having seen any sketches from our

dataset. The results are similar to those on synthetic sketches,

demonstrating that our dataset is reflective of choices that hu-

mans make when sketching 3D objects.

3D model interpolation

Our representation is well-suited for interpolating between 3D models. As

each model is composed of consistently-placed patches, we linearly interpo-

late patch parameters (e.g., vertex positions) to generate models “between”

outputs. We also interpolate in the latent space (the output of the first 1024-

dimensional hidden layer). While the two interpolations are similar, each

latent-space interpolant better resembles a realistic model due to learned pri-

ors. We show patch-space (right) and latent-space (left) interpolation between two cars.

Quad meshing and NURBS decomposition

Many algorithms have been designed for converting trianglemeshes intoNURBSpatches [KL96;

EH96; Ber+99]. By fitting a template to a 3D model, our method automatically converts the

model to a set of Coons patches. Moreover, our Coons patches are placed consistently, thus estab-

70

NURBS Patches (ours)NURBS Patches (ours)NURBS Patches (ours)NURBS Patches (Rhino) Quad Mesh (ours)Quad Mesh (Instant Meshes)

400 singularities 44 singularities

392 singularities + 24 singularities (turbines)

524 singularities 24 singularities

218 singularities 24 singularities

58 patches

72 patches

22 patches

22 patches

10000 patches

10000 patches

10000 patches

10000 patches

Quad Mesh (Instant Meshes)

400 singularities400 singularities 44 singularities

524 singularities524 singularities

218 singularities218 singularities

24 singularities24 singularities

Quad Mesh (ours)

44 singularities44 singularities

24 singularities

24 singularities

24 singularities

24 singularities

44 singularities (body)

Figure 3-23: We convert two airplane and two guitar models to NURBS patches using Rhino 3D
and compare to our Coons patches. Corresponding Coons patches across models of the same
category are the same color. We also show quad meshes generated using Instant Meshes [Jak+15]
and those from our patch decompositions. Singular points are in pink. Our representation is
muchmore compact andhence easily editable. Weproduce fewer singularities and only in known
places. Unlike with other methods, our patches and quad meshes are consistent across models.

lishing correspondences betweenmodels. In Fig. 3-23, we compare ourCoons patches toNURBS

patches automatically obtained using Rhino 3D, a commercial CAD program. Our decomposi-

tion is significantly more sparse and usable for further editing.

A common task in computer graphics is converting surfaces into quadmeshes. We can easily

obtain a quad mesh from our Coons patch decomposition by subdividing each patch. In or-

der for the quad mesh to be uniform, we determine the number of subdivisions for each patch

boundary curve by solving an integer linear problem (ILP). Our free variables are the numbers

of subdivisions per curve, and the objective encourages the number of subdivisions to be propor-

tional to the arc length of each curve. Constraints ensure that opposite curves for each patch are

equally subdivided, and when one curve contains multiple other curves (due to edge junctions),

the numbers of subdivisions are compatible. In particular, we solve the following ILP:

minimize ∑
𝑖∈𝛪
(𝑥𝑖 − 𝛼𝑠𝑖)2

s.t. 𝑥𝑖 = 𝑥𝒪(𝑖) ∀𝑖 ∈ ℰ

𝑥𝑖 = ∑
𝑗∈𝒥(𝑖)

𝑥𝑗 ∀𝑖 ∈ ℰ

𝑥𝑖 ∈ ℤ+ ∀𝑖 ∈ ℰ,

71

(b) (d)

(a) (c)

(e)

Figure 3-24: Comparisons to [Del+18] using their data (a) and our data (b), to [Lun+17] (c), to
AtlasNet [Gro+18] (d), and to Pixel2Mesh [Wan+18b] (e). Our results are in blue.

where 𝑥𝑖 is the number of subdivisions for curve 𝑖, 𝑠𝑖 is the arc length of curve 𝑖,ℰ contains all of

the curves, 𝒪 maps a curve to the opposite curve in its patch, 𝒥 maps a curve to a list of curves

contained within it, and 𝛼 is a parameter that controls the coarseness of the resulting quad mesh.

We solve the ILP using MOSEK, subdivide our Coons patches to obtain a quad mesh, and

then perform surface-preserving Laplacian smoothing in MeshLab for 10 iterations with maxi-

mum angle displacement of 5∘.
We compare our quad meshes to those produced by Instant Meshes [Jak+15], a recent quad

meshing algorithm, in Fig. 3-23. It is commonly desired to minimize the number of singular

points (vertices with valence not equal to four) and to consistently position them in a quadmesh.

Our algorithm achieves both of these goals—the number and location of singularities is deter-

mined by our template. While the Instant Meshes results contain between 215 and 524 singular

points, our quadmeshes contain only 24 (guitars), 44 (airplanewithout turbines), or 68 (airplane

with turbines).

Comparisons

We compare to the sketch-based reconstruction methods of Delanoy et al. [Del+18] (Fig. 3-24a)

andLun et al. [Lun+17] (Fig. 3-24c). Althoughweuse the same species of inputused to train these

methods rather than attempting to re-train theirmodels on our data, the visual quality of our pre-

dictions is comparable to theirs. Moreover, our output representation sparsely captures smooth

and sharp features, independent of resolution. In contrast, Delanoy et al. [Del+18] produce a 643

voxel grid—a dense, fixed-resolution representation, which cannot be edited directly and offers

no topological guarantees. In Fig. 3-24b, we evaluate their system on contours from our dataset,

demonstrating that our task of reconstruction with a prior on class (airplane) rather than struc-

ture (cylinders and cuboids) is misalignedwith theirs: Since our data is not well-approximated by

72

CSGmodels, their method cannot extract meaningful output.

Although Lun et al. [Lun+17] ultimately produce a mesh, they perform a computationally

expensive post-processing procedure, since their forward pass returns a labeled point cloud. Our

method directly outputs the parameters for surface patches with no further optimization. Addi-

tionally, their final mesh contains more components (triangles) than our output (patches), mak-

ing it less useful for editing.

In Fig. 3-24d, we compare to AtlasNet [Gro+18]. We retrain our model with their render-

ings, using the 54-face sphere template. While our 3D reconstructions capture the same degree

of detail, they do not suffer from topological defects. In particular, AtlasNet’s surfaces contains

many patch intersections and holes. Extracting a watertight mesh would require significant post-

processing. Additionally, each patch in our representation is parameterized sparsely by control

points, in contrast to AtlasNet’s patches, which must be sampled using a deep decoder network.

In Pixel2Mesh, Wang et al. [Wan+18b] input an image and output a triangle mesh. We train

our sphere template models on their data. While their meshes have 2466 vertices (7398 degrees

of freedom) we output 54 patches (816 degrees of freedom)—a more editable and interpretable

representation. As shown in Fig. 3-24e, the lowdimensionality of our output is not at the expense

of expressiveness.

We compare to Pixel2Mesh quantitatively in Table 3.2. We select 2500 random test set views

and compute Chamfer distance using 5000 sampled points. While obtain comparable Chamfer

distance values, our representation is significantly more compact, editable, and less prone to non-

manifold artifacts.

Table 3.2: Quantitative comparison to Pixel2Mesh. We report Chamfer distance (CD) and de-
grees of freedom in the representation (DOF). We obtain comparable Chamfer distance using a
representation that is an order of magnitude more compact and without non-manifold artifacts.

CD DOF

Category P2M ours P2M ours

airplane 0.022 0.025 7398 816

car 0.018 0.022 7398 816

73

Ablation study

We perform an ablation study of our method on an airplane model, demonstrating the effect

of training without each term in our loss function as well as the difference between a category-

specific template, a 54-patch sphere template, and a lower resolution 24-patch template. The

results are shown in Fig. 3-25. We also show an ablation results on the knife model in Fig. 3-26.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3-25: An ablation study of our model without normal alignment loss (a), without colli-
sion detection loss (b), without patch flatness loss (c), without template normal loss (d), without
symmetry loss (e), as well as using 24-patch (f) and 54-patch (g) sphere templates compared to the
final result (h).

(a) (b) (c) (d) (e)

self-intersection

Figure 3-26: An ablation study of ourmodelwithout normal alignment loss (a), without collision
detection loss (b), without patch flatness loss (c), without template normal loss (d), compared to
the final result (e).

The ablation study demonstrates the contribution of each component of our systemmethod

74

to the final result. Training without collision detection loss results in patch intersections. Omit-

ting thenormal loss causes the 3D surface to suffer in smoothness. Patchflatness and and template

normal losses encourage patch seams to align to sharp features. While both sphere templates cap-

ture the geometry, using more patches captures greater details, and using a non-generic template

further improves the model.

We additionally provide a quantitative ablation study for the knives and airplanes categories

in Table 3.3. We train a model without each of the normals, flatness, template normals, and colli-

sion loss terms for 50000 steps. for eachmodel, we report the average Chamfer loss, normals loss,

flatness loss, and template normals loss (as defined in Section 3.4.2) on the test set, in addition

to the average number of intersecting patch pairs. The results demonstrate that each loss term

contributes to our full model without sacrificing reconstruction quality.

Table 3.3: Quantitative ablation study of our loss function.

Model Ch. Loss Norm. Loss Flat. Loss T.N. Loss # Int. Pairs

airplanes (full) 0.0118 0.725 0.0000732 0.792 0.0220

airplanes (no norm.) 0.0105 1.09 0.0000941 0.935 0.0357

airplanes (no flat.) 0.0119 0.748 0.000254 0.866 0.0302

airplanes (no t.n.) 0.0114 0.723 0.0000734 0.889 0.0110

airplanes (no coll.) 0.0112 0.727 0.000113 1.07 3.09

knives (full) 0.0124 0.635 0.0000950 0.669 0

knives (no norm.) 0.0124 1.12 0.0000902 1.46 3.95

knives (no flat.) 0.0122 0.648 0.00132 0.733 0.0263

knives (no t.n.) 0.0126 0.671 0.0000886 1.03 0.132

knives (no coll.) 0.0122 0.631 0.0000963 0.722 0.0263

3.6 Discussion

Representation is a key theme in deep learning—andmachine learningmore broadly—applied to

geometry. Assortedmeans of communicating a shape to and fromadeepnetworkpresent varying

75

tradeoffs between efficiency, quality, and applicability. While considerable effort has been put

into choosing representations for certain tasks, the tasks we consider have fixed representations

for the input and output: They take in a shape as a function on a grid and output a sparse set of

parameters. Using distance fields and derived functions as intermediate representations is natural

and effective, not only performing well empirically but also providing a simple way to describe

geometric loss functions.

Our learning procedures are applicable to many additional tasks. A natural next step is to in-

corporate our network into more complex pipelines for tasks like vectorization of complex draw-

ings [BS19], for which the output of a learning procedure needs to be combined with classical

techniques to ensure smooth, topologically valid output. A challenging direction might be to

incorporate user guidance into training or evaluation, developing the algorithm as a partner in

shape reconstruction rather than generating a deterministic output.

Our experiments suggest several extensions for futurework. The keydrawbackof our first dis-

tance field–based approach is the requirement of closed-form distances for the primitives. While

there are many primitives that could be incorporated this way, a fruitful direction might be to

alleviate this requirement, e.g. by including flexible implicit primitives like metaballs [Bli82]. We

could also incorporate more boolean operations into our pipeline, which easily supports them

using algebraic operations on signed distances, in analogy to the CAD pipeline, to generate com-

plex topologies and geometries with few primitives. The combinatorial problem of determining

the best sequence of boolean operations for a given input would be particularly challenging even

for clean data [Du+18]. Finally, it may be possible to incorporate our network into generative

algorithms to create new unseen shapes.

76

4

Learning Manifolds with Boundary

While the parametric shape representations we were able to learn in the previous chapter were

easy and intuitive to control and manipulate, they were limited in expressiveness. Indeed, using

simple primitives like Coons patches or cuboids to model complicated or high-frequency geom-

etry quickly becomes infeasible . In this chapter, we propose a hybrid shape representation that

exhibits some of the control of an explicit representation while also enjoying the expressiveness

of neural implicit representations.

4.1 Introduction

Shape representation is a crucial component of geometry processing and learning algorithms.

Depending on the target application, different representations have varying tradeoffs. As we pre-

viously discussed in Section 3.1, shape representations broadly fall into two classes: Lagrangian

or explicit andEulerian or implicit. In this work, we show how to use the theory of currents from

geometric measure theory to design a flexible neural representation that combines favorable as-

pects from each category, representing the interiors of surfaces implicitly while maintaining an

explicit boundary representation.

Lagrangian representations encode a shape by giving coordinates of points or parameterizing

regions of the shape. To represent a curve in a Lagrangian way, one might give coordinates of

This chapter includes material from the following publication: [Smi+22].

77

successive points along the curve. Analogously, to represent a surface in 3D, one might use a

mesh, which assembles the surface out of simple patches. Lagrangian representations afford great

precision but require predetermined combinatorial structures, making it difficult to represent

families of shapes with varying topology.

In contrast, Eulerian representations encode a shape via a function on some background do-

main. For example, a surface might be encoded as the level set of a scalar function sampled on

a regular grid. Level sets of signed distance fields (SDFs) form one popular implicit represen-

tation. Implicit functions naturally capture topological variation, but traditional implicit shape

representations, inwhich the background geometrymust be discretizedwith a fixed grid ormesh,

waste resolution on regions far away from the level set of interest. Recent neural implicit repre-

sentations alleviate this problem [CZ19; Mes+19; Par+19]. The universal approximation and dif-

ferentiability properties of neural networks make them an appealing alternative to regular grid

discretizations.

Neural implicit representations come with their own limitations. Like other implicit repre-

sentations based on level sets, most neural implicit representations can only encode closed sur-

faces, which lack boundary curves. Boundaries can provide manipulation handles for control-

lable deformation, and precisely-defined boundaries can be used to stitch together surfaces into

a larger articulated surface.

In this chapter, we describe a new way to encode neural implicit surfaces with boundaries.

The key to our representation is the theory of currents from geometric measure theory. In this

theory, 𝑘-dimensional submanifolds are defined by their integration against differential 𝑘-forms,

generalizing how distributions (0-currents) are defined by integration against smooth functions.

Current spaces are complete normed linear spaces that make optimization over surfaces conve-

nient, and the boundary operator also becomes linear on these spaces. Classically, currents were

the key to solving Plateau’s minimal surface problem by transforming it into mass norm mini-

mization. We adopt themass norm as the primary loss function encouraging our neural currents

to converge to smooth surfaces.

We demonstrate our representation with three applications. We first demonstrate how it

enables computing minimal surfaces efficiently through stochastic gradient descent. Then, by

modifying the backgroundmetric used to define themass norm,we reconstruct arbitrary surfaces

78

from data. Finally, we demonstrate the flexibility of our representation by encoding families of

surfaces with explicit boundary control.

Contributions. In summary, we

• propose a new neural implicit surface representation with explicit boundary curves;

• show how to use stochastic gradient descent on the mass norm to compute minimal surfaces;

• introduce a custom background metric and additional loss terms to represent surfaces from

data; and

• describe a framework for learning families of surfaces parameterized by their boundaries along

with a latent code.

4.2 Related work

Our work takes classical ideas in minimal surface computation and brings them into the context

of modern deep learning to form a new neural shape representation. Below, we summarize key

prior works in these two areas.

4.2.1 Minimal Surface Computation

Most computational approaches tominimal surface generation use amesh or grid representation

of the surface. In the twentieth century, numerical minimal surface problems were discretized

by finite difference methods on a grid, assuming the surfaces were funieption graphs [Dou27;

Con67]. Grid-based methods were later adapted to triangle meshes [Wil61; HSK74], allowing

the generated surface to leave the space of function graphs [Wag77]. Modern mesh-based min-

imal surface solvers use mean curvature flow [Dzi90; Bra92; Des+99], stretched grids [Pop96],

quasi-Newton iterations [PP93; SW19], Voronoi tessellations [Pan+12], or curvature flows with

a conformal constraint [KSB12; CPS11]. These methods based on explicit surface representations

are straightforward, but the optimization often suffers from local minima due to non-convexity

and can even diverge [Wag77; PP93] if the initial mesh has the wrong topology.

79

A different approach to the minimal surface problem is based on geometric measure theory

(GMT), whose theoretical foundations were developed in the 1960s [Fed96; Mor16; Fle15]. In

this theory, curves and surfaces are represented implicitly by currents as dual to differential forms.

Such representations have been used in geometry processing [Mul+07; BLM18;MC19] andmed-

ical imaging [CT14; VG05; GTY04; Dur+08; Dur+09; Dur+11]. In geometric measure the-

ory, the minimal surface problem becomes the convex minimal mass norm problem (see Sec-

tion 4.3.4). A discrete analog of theminimal mass problem on a graph is a linear program known

as the optimal homologous chain problem [Sul90; DH11; DHK11; CLV20]. GMT-based dis-

cretization of the minimal surface problem in Euclidean space was pioneered by [PP97] and re-

visited by [BM19; WC21].

4.2.2 Deep Learning for Shape Reconstruction

Using deep learning to produce 3D geometry has gained popularity in vision and graphics. Net-

work architectures now can output many explicit shape representations, like voxel grids [Del+18;

Zha+18;Wu+18], point clouds [FSG17b; Yin+18; Yan+19],meshes [Nas+20;Wan+18b;Han+20],

and parametric primitives [Sha+20; Tul+17; PUG19]. While the content produced by these ap-

proaches is generally easy to render andmanipulate, it is often restricted in topology and/or reso-

lution, limiting expressiveness.

A different approach circumvents topology and resolution issues by representing 3D shapes

implicitly, using functions parameterized by neural networks. In DeepSDF, Park et al. [Par+19]

learn a field that approximates signed distance to the target geometry, while Mescheder et al.

[Mes+19] and Chen and Zhang [CZ19] classify query points as being outside or inside a shape.

Others further improve the results by proposing novel regularizers, loss functions, and training

or rendering approaches [Gro+20; AL20; Tak+21; Lip21]. While these works achieve impressive

levels of detail in surface reconstruction, they largely suffer from two drawbacks—lack of control

and inability to represent open surfaces, i.e., those with boundary.

Neural implicit learning methods typically overfit to a single target shape or learn a family of

shapes parameterized by a high-dimensional latent space. While recent work has shown the possi-

bility of adapting classical geometry processing algorithms to neural implicit geometries [Yan+21],

applying targeted manipulations and deformations to learned shapes remains nontrivial. Several

80

papers propose hybrid representations, combining the expressive power of neural implicit repre-

sentations with the control afforded by explicit geometries. Genova et al. [Gen+20] reconstruct

shapes by learningmultiple implicit representations arranged according to a learned template con-

figuration. In DualSDF [Hao+20], manipulations can be applied to learned implicit shapes by

making changes to corresponding explicit geometric primitives. BSP-Net [CTZ20] and CvxNet

[Den+20] restrict the class of learned implicit surfaces to half-spaces and convex hulls, respec-

tively. [Liu+21] defines local implicit functions on point clouds, facilitating the transition be-

tween discrete points and smooth surfaces during training. Our DeepCurrents adopt a hybrid

representation, which models boundaries explicitly and allows them to be used as handles for

manipulation.

4.3 Preliminaries

Geometric measure theory is a vast field that we will not attempt to summarize here. For a com-

prehensive treatment, we refer the reader to [Sim14; Fed96; Lan04]. We focus on the rudiments

necessary to construct our optimization problem in dimensions two and three, eliding technical

issues that arise in higher-dimensional ambient spaces.

The theory of currents is motivated by solving Plateau’s Problem, the problem of finding the

surface of minimal area enclosed by a given boundary:

argmin
𝛴

{𝛢(𝛴) ∶ 𝜕𝛴 = 𝛤}. (4.1)

The problem (4.1) seeks a solution in the space of smooth embedded submanifolds with bound-

ary, which lacks convenient properties such as convexity and compactness required for reasoning

about optimization. In GMT, this space is relaxed to a space of currents, generalized submani-

folds characterized by integration. Plateau’s problem (4.1) is systematically translated into a prob-

lem over currents. The area functional becomes themass norm, and 𝜕 becomes a linear operator

constructed by dualizing the exterior derivative d. We describe this translation in detail below.

81

4.3.1 Currents

Currents are to submanifolds as distributions are to sets of points. Just as distributions are char-

acterized by integration against functions, 𝑘-currents are characterized by integration against dif-
ferential 𝑘-forms in the ambient space. For our purposes, that ambient space will be an open

subset 𝑈 ⊆ ℝ𝑑, 𝑑 ≤ 3. For now, we will assume the metric is Euclidean; see Section 4.4.2 for

the generalization to Riemannian metrics. We will also assume that 𝑈 is bounded and simply

connected to elide various technical issues.

We denote the space of smooth 𝑘-forms with compact support in𝑈 by𝛺𝑘
𝑐 (𝑈). Recall that a

𝑘-form 𝜁 ∈ 𝛺𝑘
𝑐 (𝑈) smoothly assigns to each point 𝑥 ∈ 𝑈 an element 𝜁𝑥 ∈ ⋀

𝑘 𝛵∗
𝑥𝑈, the exterior

power of the cotangent space at 𝑥. In Euclidean space, there is a canonical identification between
covectors (𝑘 = 1) and vectors. ARiemannianmetric provides a similar identification but requires

more careful bookkeeping (see Section 4.4.2).

The space of 𝑘-currents
𝒟𝑘(𝑈) = (𝛺𝑘

𝑐 (𝑈))∗ (4.2)

is the dual space of (compactly-supported) 𝑘-forms, i.e., it consists of continuous linear function-

als on 𝑘-forms. An element 𝛵 ∈ 𝒟𝑘(𝑈) is defined by its assignment of real values to 𝑘-forms:

𝜁 ∈ 𝛺𝑘
𝑐 (𝑈) ↦ 𝛵(𝜁) ∈ ℝ. (4.3)

The following are two key examples of currents:

• A 0-current is simply a distribution, as

𝒟0(𝑈) = (𝛺0
𝑐 (𝑈))∗ = (𝐶∞

𝑐 (𝑈))∗ = 𝒟(𝑈). (4.4)

• A submanifold 𝛴 ⊂ 𝑈 of dimension 𝑘 can be viewed as a current [𝛴] ∈ 𝒟𝑘(𝑈) by integration
against it:

[𝛴](𝜁) ≔ ∫
𝛴
𝜁. (4.5)

82

4.3.2 Boundary operator

In generalizing the boundary operator from submanifolds to currents, we need to ensure that

𝜕[𝛴] = [𝜕𝛴]. Stokes’ Theorem tells us that

[𝜕𝛴](𝜁) = ∫
𝜕𝛴
𝜁 = ∫

𝛴
d𝜁 = [𝛴](d𝜁), (4.6)

motivating the definition

𝜕𝛵(𝜁) ≔ 𝛵(d𝜁). (4.7)

In words, we define 𝜕 as the adjoint of d.

4.3.3 Mass norm

As we did for the boundary operator, we write the area functional in terms of integration against

forms and then replace integration by current evaluation. This definition depends on a pointwise

norm | ⋅ | on 𝑘-forms. As we are working in dimensions 𝑑 ≤ 3, it is sufficient to use the pointwise

inner product norm.

If 𝛴 ⊂ 𝑈 is a smooth 𝑘-submanifold with boundary, then its area satisfies

𝛢(𝛴) = sup
𝜁∈𝛺𝑘

𝑐 (𝑈)
{∫

𝛴
𝜁 ∶ |𝜁𝑥| ≤ 1 ∀𝑥 ∈ 𝑈} . (4.8)

So we define themass norm of a current 𝛵 ∈ 𝒟𝑘(𝑈) as:

M(𝛵) ≔ sup
𝜁∈𝛺𝑘

𝑐 (𝑈)
{𝛵(𝜁) ∶ |𝜁𝑥| ≤ 1 ∀𝑥 ∈ 𝑈}. (4.9)

4.3.4 Minimal mass problem

Applying the transformations above to the problem (4.1), one obtains a relaxation known as the

minimal mass problem:

min
𝛵∈𝒟𝑘(𝑈)

{M(𝛵) ∶ 𝜕𝛵 = 𝛤}. (4.10)

83

In classical GMT, the current 𝛵 is taken to be in the space ℐ𝑘(𝑈) of integral 𝑘-currents, which
roughlymeans currents that look like integer linear combinations ofLipschitz surfaces. Whenop-

timizing overℐ𝑑−1(𝑈) in ambient dimension 𝑑 ≤ 7, there is an optimal solution corresponding

to a smooth submanifold (see [Fed96] Theorem 5.4.15, [Sim14] Theorem 5.8, [Lan04] Theorem

3.10). More recent theory extends this result to optimization over general currents𝒟𝑘(𝑈) (see
[BM19] Theorem 2, [Sim14] Remark 5.2).

4.3.5 Representing currents by forms

For computational purposes, we follow [WC21] and optimize over 𝑘-currents represented by dif-
ferential (𝑑 − 𝑘)-forms. This allows us to represent currents by neural networks.

A (𝑑 − 𝑘)-form can be identified with a 𝑘-current [𝜔] ∈ 𝒟𝑘(𝑈) by defining

[𝜔](𝜁) ≔ ∫
𝑈
𝜔 ∧ 𝜁

for any 𝜁 ∈ 𝛺𝑘
𝑐 (𝑈). With this identification, we have by Stokes’ Theorem:

𝜕[𝜔](𝜁) = [𝜔](d𝜁) = ∫
𝑈
𝜔 ∧ d𝜁 (4.11)

= (−1)𝑑−𝑘+1∫
𝑈
d𝜔 ∧ 𝜁 = [(−1)𝑑−𝑘+1d𝜔] (𝜁).

The boundary constraint 𝜕[𝜔] = 𝛤 thus becomes an exterior differential equation,

d𝜔 = 𝛿𝛤, (4.12)

where 𝛿𝛤 is a singular (𝑑 − 𝑘)-form representing 𝛤.

Similarly, the mass norm of a 𝑘-current becomes the 𝐿1 norm of a (𝑑 − 𝑘)-form:

M([𝜔]) = ‖𝜔‖1 = ∫
𝑈
|𝜔(𝑥)|dvol (4.13)

where dvol is the volume form.

84

4.4 DeepCurrents

In the previous section, we described the relaxation of Plateau’s minimal surface problem into a

convex optimization problem over a space of currents, with the property that its optima include

smooth surfaces, and we showed how to represent certain currents by differential forms. Now,

we introduce our novel neural representation of currents and SGDmass minimization.

4.4.1 Neural representation

The linear space of solutions to (4.12) can be parameterized using the Hodge decomposition:

𝜔 = d𝑓 + 𝛼, (4.14)

where 𝛼 ∈ 𝛺𝑑−𝑘(𝑈) is any particular solution of (4.12), 𝑓 ∈ 𝛺𝑑−𝑘−1(𝑈); we ignore the harmonic

term as 𝑈 is simply connected. For curves in 𝑈 ⊂ ℝ2 (𝑘 = 1, 𝑑 = 2) and surfaces in 𝑈 ⊂ ℝ3

(𝑘 = 2, 𝑑 = 3), 𝑓 will simply be a function on 𝑈, which we can represent by a neural network.

It is convenient to use the (Euclidean) musical isomorphism # to encode our 1-form 𝜔 as the

vector field𝜔#. Intuitively, the vector field corresponding to a current points in the surfacenormal

direction. Under this identification, (d𝑓)# = ∇𝑓, which can be computed by autodifferentiation.

As for 𝛼, there is a particularly convenient choice known as the Biot-Savart field, which can

be written in closed form when 𝛤 is a polygonal curve (see [WP09]):

𝛼#(𝑥)≔∫
𝛤

𝑑ℓ⃗ × �⃗�
|�⃗�|3 =∑

𝑖

(�̂�𝑖 ⋅ (�̂�1𝑖 − �̂�0𝑖))(�̂�𝑖 × �⃗�0𝑖)
|�̂�𝑖 × �⃗�0𝑖 |2

, (4.15)

where 𝑑ℓ⃗ denotes the vector arc measure on 𝛤, �̂�𝑖 is the tangent vector to the 𝑖th segment of 𝛤, �⃗�0𝑖
and �⃗�1𝑖 are, respectively, the vectors from the point 𝑥 to the initial and final vertices of segment

𝑖, and �̂�0𝑖 and �̂�1𝑖 are their normalized directions. In practice, we scale 𝛼 by 10−3 to better match

the normalization of our network weights; this only changes the mass minimization problem by

a uniform scale. Figure 4-1a visualizes a Biot-Savart field in 2D.

85

Enacting the choices above, we can use neural networks to solve the minimal mass problem:

argmin
𝜃

‖d𝑓𝜃 + 𝛼𝛤‖1 = argmin
𝜃

𝔼𝑥∼𝒰𝑈
[∣∇𝑥𝑓𝜃(𝑥) + 𝛼#𝛤(𝑥)∣] , (4.16)

where𝑓𝜃 is a neural networkwithweights 𝜃,𝒰𝑈 is the uniformdistribution over𝑈 = [−1, 1]𝑑. ∇
is computed exactly via automatic differentiation, and 𝛼#𝛤 is the boundary-dependent Biot-Savart
field, computed in closed form. The expectation in (4.16) is approximated by uniform sampling

over𝑈, yielding a method to compute minimal surfaces via stochastic gradient descent (SGD).

Compared to previous discretizations of currents and the minimal surface problem [WC21],

we

1. represent 𝑓 via a neural network rather than a voxel grid;

2. evaluate 𝛼 in closed-form; and

3. evaluate the mass norm as an expectation that is amenable to SGD.

These key choices allow our minimal surfaces to achieve arbitrary resolution.

4.4.2 Modifying the metric

Critical to the computer vision applications that we consider, we can use a background Rieman-

nian metric to encode general surfaces that are not minimal under the Euclidean metric. The

properties of mass norm minimization almost certainly carry over—in particular, the regularity

of minima (see e.g., [Mor03]).

Let 𝑔 be a Riemannian metric given by

𝑔(𝛸, 𝑌) = ⟨𝛢𝛸, 𝑌⟩ = ⟨𝛸,𝛢𝑌⟩ ∀𝛸, 𝑌 ∈ 𝛵𝑈, (4.17)

where ⟨⋅⟩ is the Euclidean inner product and𝛢 is a smoothly varying symmetric positive definite

linear map on the tangent bundle (𝛢𝑥 ∶ 𝛵𝑥𝑈 → 𝛵𝑥𝑈). The Riemannian pointwise norm for a

𝑘-form 𝜁 is given by

|𝜁𝑥|𝑔 = |(𝛢−1/2
𝑥)∗𝜁𝑥|, (4.18)

86

where |⋅| is the Euclidean pointwise norm, and𝛣∗𝜁 denotes the pullback form𝛣∗𝜁(𝛸1, … ,𝛸𝑘) =
𝜁(𝛣𝛸1, … , 𝛣𝛸𝑘). The 𝑔–mass norm is then:

M𝑔([𝜔])=‖𝜔‖1,𝑔 =∫
𝑈
|(𝛢−1/2)∗𝜔|(det𝛢)𝑑/2dvol. (4.19)

The differential equation (4.12) and its solution (4.14) are topological and do not change.

(a) (b) (c)

(d) (e) (f)
Figure 4-1: Minimizing the mass norm ‖𝑑𝑓 + 𝛼‖1 under the Euclideanmetric in two dimensions
yields a line segment connecting the two boundary points (b). With our custom data-dependent
background metric, we can reconstruct the semicircle as a current (e). 𝛼 is shown as a vector
field (a) and the custommetric is depicted by oriented ellipsoids (d, not to scale). Corresponding
functions 𝑓 are shown at right (c and f).

In summary, theRiemannianproblemdiffers from theEuclideanoneby a symmetric positive

definite matrix 𝛣𝑥:
argmin

𝜃
‖d𝑓𝜃 + 𝛼𝛤‖1,𝑔

= argmin
𝜃

𝔼𝑥∼𝒰𝑈
[∣𝛣𝑥(∇𝑥𝑓𝜃(𝑥) + 𝛼#𝛤(𝑥))∣] .

(4.20)

In the 2Dexample depicted in Fig. 4-1,minimizing themass normunder theEuclideanmetric

yields a straight line segment (Fig. 4-1b). Changing themetric (Fig. 4-1d) yields a semicircle (Fig. 4-

1e) instead. Corresponding density plots of 𝑓 are shown in Figs. 4-1c and 4-1f, respectively.

87

4.4.3 Loss functions

The main objective function optimized by our training procedures is the current loss, which fol-

lows from (4.20):

ℒcurr(⋅) = 𝔼𝑥∼𝒰𝑈
[∣𝛣𝑥(∇𝑥𝑓𝜃(𝑥) + 𝛼#𝛤(𝑥))∣] . (4.21)

We approximate the expectation by a sample average over a sample drawn from the uniform dis-

tribution on𝑈.

For minimal surface computation (Section 4.5.1), we set 𝛣𝑥 = 𝛪 for all 𝑥 ∈ 𝑈. For surface

reconstruction (Sections 4.5.2 and 4.5.3), we define

𝛣𝑥 = 𝑤𝑥(𝛪 − �̂�proj𝛴(𝑥)�̂�
⊤
proj𝛴(𝑥)

), (4.22)

where𝛴 is the ground truth surface, proj𝛴(𝑥) is the closest point on𝛴 to 𝑥, and �̂�proj𝛴(𝑥) is its unit
normal. This positive semidefinite matrix, corresponding to a degenerate Riemannian metric,

penalizes the current’s deviation from agreement with the surface’s orientation. A patch aligned

with 𝛴 (∇𝑓 + 𝛼#𝛤 ∥ �̂�) costs zero.
When evaluating (4.20), for half of the samples in𝑈, we set 𝑤𝑥 = 1, and for the other half

𝑤𝑥 = exp (− 1
2𝜎2 ‖𝑥 − proj𝛤(𝑥)‖

2
2) , (4.23)

where proj𝛤(𝑥) is the closest point on the boundary to 𝑥 under Euclidean distance, and 𝜎 = 0.1
in practice. We find empirically that adding this boundary weighting, where samples close to

the prescribed boundary have a higher contribution to the current loss, with a Gaussian falloff,

slightly improves our learned surfaces, particularly near the boundary. See Section 4.5.4 for an

ablation study.

For surface reconstruction, we employ an additional loss term to guide our optimization. We

define surface loss as:

ℒsurf(⋅)=𝔼𝑥,𝜀 [(𝛿 − 𝑓(𝑥 − 𝜀𝑛𝑥) + 𝑓(𝑥 + 𝜀𝑛𝑥))
+] , (4.24)

where 𝑥 ∼ 𝒰𝛴, the uniform measure on the target surface 𝛴, 𝑛𝑥 is the (oriented) surface normal

88

vector at a point 𝑥 ∈ 𝛴, 𝜀 and 𝛿 are small threshold. In practice, we set 𝛿 = 0.01, randomly pick

𝜀 ∼ 𝒰[0.0199,0.0201], and approximate the expectation by sampling on 𝛴.
This hinge loss encourages the values of our learned function 𝑓 to differ by no less than a

margin 𝛿 across the target surface. This objectivemay seem redundant as themetric (4.22) already

encourages alignment to the target surface. In fact, the two are complementary—the surface loss

encourages𝑓 to jumpnear the target surface, while the current loss ensures that the bandwidth of

the jump decreases. We find that using the surface loss term helps our models converge to better

optima (see our ablation study in Section 4.5.4).

4.4.4 Network architecture

We learn a single current d𝑓𝜃 + 𝛼, using a deep neural network to parameterize 𝑓𝜃 ∶ ℝ3 → ℝ.

Given an input point 𝑥 ∈ ℝ3, we first project it onto a random Fourier feature (RFF) space, as in

[Tan+20], to obtain �̂� ∈ ℝ2048. Our RFF coefficients are 2048-dimensional and sampled from

ℕ(0, 4). We then decode the RFF vector to a scalar value 𝑓𝜃(𝑥) using anMLP ℎ𝜃, which consists
of three hidden layers, each with 256 units and softplus nonlinearities. This pipeline is illustrated

in the top half of Fig. 4-2.

Figure 4-2: Anoverviewof ournetwork architec-
tures for minimal surface optimization and sin-
gle surface reconstruction (top) as well as shape
space learning (bottom). An inputpoint𝑥 is first
encoded using random Fourier features. These
features are then optionally concatenated with
latent codes corresponding to shape identity and
boundary and finally decoded to a scalar output.

Additionally, we propose a boundary-

conditioned autodecoder architecture for learn-

ing families of currents (see Fig. 4-2, bottom).

We initialize a latent code 𝑧𝑗 ∼ ℕ(0, 0.1) for
each mesh, and we encode the mesh boundary

geometry using a boundary encoder ℰ𝛤. For

shapes that have more than one boundary, we

use a separate encoder for each boundary loop

to obtain a set of boundary latent codes 𝑧𝛤𝑖 . We

then concatenate the latent codes along with

the RFFs [𝑧𝑗 ∣ 𝑧𝛤1𝑗 ∣ … ∣ 𝑧𝛤𝛣𝑗 ∣ �̂�] and pass

this vector through a decoder ℎ𝜃 as in the over-
fitting setting above.

Our boundary encoder inputs boundary

89

vertices 𝑣𝛤 ∈ ℝ𝑏×3. The encoder is a network with three 1-dimensional convolutional layers with

stride 1 and circular boundary conditions. The first layer uses a kernel of size 5 while the latter two

use kernels of size 3. Each layer has 256 channels, and we use ReLU after each layer except the last.

After the convolutions, we take the mean across all the boundary vertices to obtain the bound-

ary latent code. Circular convolutions combined with mean pooling ensure that our encoder is

invariant to cyclic permutations of the vertices, corresponding to the same boundary geometry.

4.5 Experimental results

We evaluate DeepCurrents experimentally by demonstrating results on minimal surface compu-

tation, overfitting for single surface reconstruction, and shape space learning and interpolation.

We also show an ablation study to validate ourmain design choices. All of ourmodels are trained

on a single NVIDIA GeForce RTX 3090 GPU using Adam [KB14].

4.5.1 Minimal surfaces

Figure 4-3: Minimal currents computed via
[WC21] on a 90 × 90 × 90 grid (middle) dis-
play prominent grid artifacts, especially near the
boundary. In contrast, with a similar number of
parameters (725,249weights), we achieve higher
effective resolution (right). Boundaries (left) are
the trefoil knot (top), Hopf link (middle), and
Borromean rings (bottom).

We use our method to compute minimal sur-

faces for three boundary configurations. We

train each model for 105 iterations (∼ 12 min-

utes) with a learning rate of 0.0005, sampling

4096 points from the ambient space at each

step and reducing the learning rate by a fac-

tor of 0.6 every 10,000 steps. We only opti-

mizeℒcurr with the Euclidean metric in these

examples—we do not use ℒsurf or boundary

weighting.

Figure 4-3 compares our results to those

from [WC21], which uses a voxel grid; the col-

ors represent local current orientation, which

corresponds to the surface normal direction.

For fair comparison, we choose the grid size to

90

approximate our number of trainable parameters (903 ≈ 725,249). While our learned currents

adhere well to the smooth input boundaries, the currents of [WC21] show significant grid arti-

facts. Thus, our representation exhibits greater capacity to encode high-resolution surfaces with

the same number of parameters

4.5.2 Surface reconstruction

Figure 4-4: Human body surface reconstructions. We overfit DeepCurrents models to recon-
struct several torso, head, hand, and foot meshes. We show a volume rendering of each learned
current (right) next to the ground truth mesh (left).

We perform surface reconstruction using DeepCurrents by overfitting to several segmented

parts of models from the FAUST human body dataset [Bog+14]. We preprocess the data by split-

ting the mesh according to the provided segmentations, rigidly aligning all the models within

each segmentation class, and rescaling them to fit into [−0.5, 0.5]3.
We train eachmodel for 10,000 iterations (∼ 4minutes) with an initial learning rate of 0.001,

decayedby a factor of0.6 every2000 iterations. We sample4000 randompoints fromthe ambient

space (to computeℒcurr) and 4000 points from themesh surface (to computeℒsurf) at each step.

We show results on torsos, heads, hands, and feet from randomly chosen models in Fig. 4-4.

Our currents faithfully reconstruct the target geometry.

91

Table 4.1: Quantitative comparison of unidirectional Chamfer distance to [Ven+21] on single
surface reconstruction of randommodels from each of four shape categories.

Model UCD ([Ven+21]) UCD (ours)

head 0.0049 0.0010
hand 0.0045 0.0011
torso 0.0049 0.00092
foot 0.0055 0.00092

Additionally, we compare quantitatively to [Ven+21] in Table 4.1. We train their model for

the same amount of time as ours on randomly picked models. Because their model predicts the

closest point on the target surface given any input point, we use this to compute unidirectional

Chamfer distance (i.e., 𝔼𝑦∼𝒰𝛴
[dist𝛴∗(𝑦)], where 𝒰𝛴 is the uniform distribution on the ground

truth mesh, and dist𝛴∗ is Euclidean distance to the learned surface).

We do the same for our method by meshing our learned current: We compute the aver-

age value 𝑠 of 𝑓 over a boundary curve. Then, we extract a mesh of the level set 𝑓−1(𝑠) using
marching cubes. This level set is generically a closed surface containing our represented surface

with boundary 𝛴∗ as a subset. We extract a mesh of 𝛴∗ by removing vertices 𝑥 for which the

|∇𝑥𝑓𝜃(𝑥) + 𝛼#𝛤(𝑥)| < 𝛿, where 𝑛𝑥 is the surface normal at 𝑥. In practice, we use 𝛿 = 5 × 10−3.
Our method consistently achieves better quality reconstructions than [Ven+21].

4.5.3 Latent space learning

We use our boundary-conditioned autodecoder (Section 4.4.4) to learn a disentangled represen-

tation that can interpolate in a high-dimensional learned latent space capturing shape identity

while having explicit control over boundary geometry. We associate each mesh in our dataset

with a random latent code (a trainable parameter), and, to disambiguate shape identity from

boundary geometry, we perform random transformations. These transformations change the

the boundary shape while preserving the latent code.

At each iteration, we perform random augmentations to the target meshes: we rotate each

mesh by sampling a value in [−10∘, 10∘] for each Euler angle, we rescale each boundary loop of

the mesh by a random factor between 0.85 and 1.15 along each of its two principal directions, we

propagate these transformations to the entire mesh using harmonic skinning weights, and we

92

Figure 4-5: Interpolations of DeepCurrents in latent and boundary space. For each category,
we pick two meshes from the training set (shown with a blue border) and interpolate linearly
between the two boundaries (horizontal axis) as well as the two latent codes (vertical axis). The
latent space interpolation yields a smooth transition between the two meshes while obeying the
prescribed boundary interpolants.

shift the mesh by a random offset between −0.05 and 0.05 in each dimension.

We train a model for each shape category for 300,000 iterations (about 10 hours) with an

initial learning rate of 0.0004, decayed by a factor of 0.5 every 60,000 iterations. At each step, we
sample a random batch of 8 meshes and sample 4000 points from each mesh.

In Figure 4-5, we pick two models from each shape category and independently interpolate

between their boundaries and latent identities. Our model disentangles high-level pose and style

while respecting the prescribed geometry.

4.5.4 Ablation study

Figure 4-6: Ablation study. From left to right:
reconstruction results on a hand without ran-
domFourier features, without surface loss, with-
out boundary weighting, and our full model.

We validate some of our key design choices.

In Fig. 4-6, we overfit five models to the same

hand mesh. While our full model achieves

a sharp reconstruction, removing boundary

weighting from our current loss metric yields a

fuzzier surface around the boundary. Chang-

ing the softplus activation functions in ℎ𝜃 to

93

ReLUs makes the entire learned surface significantly less sharp, which we conjecture is due to

ReLU’s zero second derivative when optimizing currents d𝑓 + 𝛼. Removing the surface loss

term from our optimization fails to recovermuch of the target surface, supporting our claim that

surface loss significantly helps convergence. Finally, foregoing the projection of the input points

onto random Fourier features prevents the model from learning.

4.6 Discussion

By adopting tools from geometric measure theory, we have constructed a neural implicit repre-

sentation for surfaces with boundary. Our SGD approach to mass norm minimization enables

computing minimal surfaces with arbitrary resolution, in contrast to previous work that repre-

sents currents on a fixed-resolution grid. In addition, by constructing a background metric, we

can engineer a mass minimization problem to encode an arbitrary surface. Combining this con-

struction with the expressive power of neural representations, we can encode whole families of

surfaces.

We seeDeepCurrents as a key tool for building flexible neural surface representations. Stitch-

ing together DeepCurrents along their boundaries would produce a hybrid surface representa-

tion where the explicit boundary curves provide “handles” for user control. Such a representa-

tion would be applicable where the target surface is decomposed into parts. Unlike, say, a mesh

decomposition, aDeepCurrent decompositionwould not require the parts to have simple shapes

or even to be simply connected.

Another direction for future work would be to investigate other loss functions and optimiza-

tion problems that can be expressed in the language of currents. For example, the convex prob-

lems studied in [MC19] could be optimized using a neural representation and SGD. One could

also compute minimal currents in spaces such as the rotation groups SO(𝑑) or special Euclidean
groups SE(𝑑). Mass minimization in this context could provide a useful prior for reconstruc-

tion of shapes that come with an orientation or frame field, or it could exploit the Gauss map to

encode a smoothness prior.

Another extension of ourmethodwould be to support periodicminimal surfaces, i.e., replac-

ing the domain [−1, 1]3 by the torus𝕋3. This would require a modification of our explicit 𝛼 and

94

the evaluation of d𝑓 at the boundary.

While our latent space model often produces high-quality interpolants, they are not explic-

itly regularized to encourage them to look like surfaces. This sometimes yields fuzzy results (see

Fig. 4-5, top right among the hands). Future work could design loss terms to ensure interpolants

remainminimalwith respect to somemetric—analogously to the eikonal regularization for SDFs

in [AL20].

95

5

Learning Sprites

The previous two chapters, have focused on leveraging deep learning to produce useful and in-

tuitive geometric primitives without have strict supervision. Now, we apply a similar approach

to textured images. We engineer an architecture that lets us discover semantically meaningful

repeating elements, endowing a collection of raster images with a geometry that facilitates under-

standing and manipulation.

5.1 Introduction

Since the early days of machine learning, the accepted unit of image synthesis has been the pixel.

But while the pixel grid is a natural representation for display hardware and convolutional gener-

ators, it does not easily permit high-level reasoning and editing.

In this chapter, we take inspiration from animation to consider an atomic unit that is richer

and easier to edit than the pixel: the sprite. In sprite-based animation, a popular early technique

for drawing cartoons and rendering video games, an artist draws a collection of patches—a sprite

sheet—consisting of texture swatches, characters in various poses, static objects, and so on. Then,

each frame is assembledby compositing a subset of thepatches onto a canvas. By reusing the sprite

sheet, authoring new content requires minimal effort and can even be automated procedurally.

Our goal is to invert this process, simultaneously tackling unsupervised instance segmenta-

This chapter includes material from the following publication: [Smi+21].

96

tion and dictionary learning. Given an image dataset, e.g., frames from a sprite-based video game,

we train a model that jointly learns a 2D sprite dictionary, capturing recurring visual elements in

an image collection, and explains each input frame as a combination of these potentially transpar-

ent sprites. Whereas standard CNN-based generators hide their feature representation in their

intermediate layers, our model wears its representation “on its sleeve”: by explicitly compositing

sprites from its learnt dictionary onto a background canvas, rather than synthesizing pixels from

hidden neural features, it provides a readily-interpretable visual representation.

Our contributions include the following:

• We describe a grid-based anchor system along with a learned dictionary of textured patches

(with transparency) to extract a sprite-based image representation.

• We propose a method to learn the patch dictionary and the grid-based representation jointly,

in a differentiable, end-to-end fashion.

• We compare to past work on learned disentangled graphics representations for video games.

• We showhowourmethodoffers promising avenues for furtherwork towards identifying visual

patterns in more complex data such as natural images and video.

5.2 Related work

Decomposing visual content into semantically meaningful parts for analysis, synthesis, and edit-

ing is a long-standing problem. We review the most closely related work.

Layered decompositions. Wang and Adelson [WA94] decompose videos into layers undergoing

temporally-varying warps for compression. Similarly, Flexible Sprites [JF01] and Kannan, Jojic,

and Frey [KJF05] represent videos with full-canvas semi-transparent layers to facilitate editing.

Like Flexible Sprites, we adopt translation-only motion but restrict transformations to small

neighborhoods around anchors, making inference tractable with many (≥ 100) sprites. Other

methods decompose videos with moving subjects, such as humans, into independent layers, en-

abling matting [Lu+21] and retiming of individual actions [Lu+20]; unlike sprite-based tech-

niques, motion and appearance are not disentangled. Sbai, Couprie, and Aubry [SCA20] use

97

a layered representation as inductive bias in a GANwith solid colored layers. Automatic decom-

positions into “soft layers” according to texture, color, or semantic features have been used in

image editing [Aks+17; Aks+18]. Gandelsman, Shocher, and Irani [GSI19] use deep image pri-

ors [UVL18] to separate images into layer pairs. Huang and Murphy [HM16] introduce a recur-

rent architecture to output multiple layers sequentially. Reddy et al. [Red+20] discover patterns

in images via differentiable compositing.

Interpretable generators for neural synthesis. Neural networks improve the fidelity and realism

of generativemodels [Goo+14; Kar+20] but limit control and interpretability [Che+16; Här+20;

Bau+19a; Bau+19b]. Several works explore interpretability using differentiable domain-specific

functions. Hu et al. [Hu+18] and Li et al. [Li+18] constrain the generator to sets of parametric

image operators. Mildenhall et al. [Mil+20b] use a ray-marching prior and renderingmodel to en-

code a radiance field for novel view synthesis. Neural textures [TZN19] replace RGB textures on

3Dmeshes with high-dimensional features. Rendering under new views enables view-consistent

editing. Lin et al. [Lin+18] use spatial transformers in their generator to obtain geometric trans-

formations. We synthesize frames by compositing 2D sprites undergoing rigidmotions, enabling

direct interpretation and control over appearance and motion.

Object-centric representations. Our learned sprites reveal, segment, and track object instances.

Similarly, Slot Attention [Loc+20] extracts object-centric compositional video representations.

However, our sprites are interpretable—motion and appearance are direct outputs—and our

model scales to more objects per scene. SCALOR [Jia+19] handles up to 100 instances but does

not produce a commondictionary or handle diverse sprites. While SPACE [Lin+20] decomposes

images into object layers, it tends to embed sprites in the background, providing no control. Our

method identifies a greater number of sprite patterns (see Section 5.4.1). Stampnet [Vis+19] dis-

covers and localizes objects but focuses on simpler, synthetic datasets. MONet [Bur+19] decom-

poses images into multiple object regions using attention. Earlier attentionmechanisms leverage

pattern recurrence [Kos+18a; CP20] andmotion cues [Esl+16] to identify individual objects. Re-

cent works use parametric primitives as image building blocks [Smi+20; Li+20].

Applying our sprite decompositions to video games, we can learn about dynamics and game-

play, benefiting downstream agents [Jus+19; He+19] and aiding content-authoring for research

98

and game development, as in Procedural Content Generation [Sum+18]. GameGAN [Kim+20]

synthesizes new frames from controller input. They split rendering into static and dynamic com-

ponents but render full frames, without factorization into parts. Their generator is difficult to

interpret: appearance and dynamics are entangled within its parameters.

Compression. Appearance consistency andmotion compensation are central to video compres-

sion [BC15; Lu+19; Lom+19]. Wemodel videos as compositions of sprites, factoring redundancy

in the input. This draws inspiration from works like DjVu [Haf+99] and Digipaper [HFR99],

which compress scanned documents by separating them into a background layer and foreground

text. Image epitomes [JFK03] summarize and compress image shape and appearance into aminia-

ture texture. Our sprite dictionary fills a similar role, providing superior editing control.

composite

input frame

latent
sprite codes

background

ENCODER

TRANSFORM
PREDICTOR

sprite
scoring

transform
sprites

extract local crops

SPRITE
GENERATOR

sprite layers

reconstructionper-anchor spritesanchors
switches

sprites dictionary

Figure 5-1: Overview. We jointly learn a sprite dictionary, represented as a set of latent codes
decoded by a generator, as well as an encoder network that embeds a frame into a grid of latent
codes, or anchors. Comparing anchor embeddings to dictionary codes lets us assign a sprite to
each grid cell. Our encoder also outputs a binary switch per anchor to turn sprites on and off.
After compositing, we obtain a reconstruction of the input. Our self-supervised training opti-
mizes a reconstruction loss.

5.3 Method

We start with an input sequence of 𝑛 RGB frames {𝛪1, … , 𝛪𝑛} with resolution 𝑤×ℎ. Our goal is

to decompose each frame 𝛪𝑖 ∈ ℝ3×𝑤×ℎ into a set of possibly overlapping sprites, organized into ℓ
depth layers, selected from a dictionary. The dictionary is a collection of trainable latent codes

{𝑧1, … , 𝑧𝑚} that are decoded into RGBA sprites using a neural network generator (Section 5.3.1).

99

Our training pipeline is illustrated in Fig. 5-1. We first process each input frame with a convo-

lutional encoder to produce ℓ grids of feature vectors, one grid per depth layer (Section 5.3.2). The
grids are lower resolution than the input frame, with a downsampling factor proportional to the

sprite size. We call the center of each grid cell an anchor. We compare each anchor’s feature vector

against the dictionary’s latent codes, using a softmax scoring function, to select the bestmatching

sprite per anchor (Section 5.3.3). Using our sprite generator, we decode each anchor’s matching

sprite. This gives us a grid of sprites for each of the ℓ layers. To factorize image patterns that may

not alignwith our anchor grid, we allow sprites tomove in a small neighborhood around anchors

(Section 5.3.4). We composite the layers from back to front onto the output canvas to obtain our

final reconstruction (Section 5.3.5). Optionally, the background is modeled as a special learnable

sprite that covers the entire canvas.

We train the dictionary latent codes, frame encoder, and sprite generator jointly on all frames,

comparing our reconstruction to the input (Section 5.3.6). This self-supervised procedure yields

a representation that is sparse, compact, interpretable, and well-suited for downstream editing

and learning applications.

5.3.1 Dictionary and sprite generator

The central component of our representation is a global dictionary of 𝑚 textured patches or

sprites𝒟 = {𝛲1, … , 𝛲𝑚}, where each 𝛲𝑖 ∈ ℝ4×𝑘×𝑘 is an RGBA patch. Our sprites have an alpha

channel, which allows them to be partially transparent, with possibly irregular (i.e., non-square)

boundaries. This is useful for representing animations with multiple depth layers and also al-

lows to learn sprites smaller than their maximal resolution, if necessary, by setting alpha to zero

around the boundary. The dictionary is shared among all frames; we reconstruct frames using

only sprites from the dictionary.

Instead of optimizing for RGBA pixel values directly, we represent the dictionary as a set of

trainable latent codes {𝑧1, … , 𝑧𝑚}, with 𝑧𝑖 ∈ ℝ𝑑. We decode these codes into RGBA sprites using

a fully-connected sprite generator 𝛲𝑖 = 𝒢 (𝑧𝑖). This latent representation allows us to define a

similaritymetric over the latent space, whichwe use to pair anchorswith dictionary sprites to best

reconstruct the input frame (Section 5.3.3). At test time, we can edit the RGBA sprites directly.

Unless otherwise specified, we set latent dimension to 𝑑 = 128 and patch size to 𝑘 = 32.

100

We randomly initialize the latent codes from the standard normal distribution. Our sprite

generator first applies zero-mean unit-variance normalization—Layer Normalization [BKH16],

without an affine transformation—to each latent code 𝑧𝑖 individually, followed by one fully-

connected hidden layer with 8𝑑 features, Group Normalization [WH18], and ReLU activation.

We obtain the final sprite using a fully-connected layer with sigmoid activation to keep RGBA

values in [0, 1]. Latent code normalization is crucial to stabilize training and keep the latent space

in a compact subspace as the optimization progresses. See Section 5.4.3 for an ablation study of

this and other components.

5.3.2 Layered frame decomposition using sprite anchors

We seek a decomposition that best explains each input frame using dictionary sprites. We exploit

translation invariance and locality in our representation; our sprites are “attached” to a regular

grid of reference points, or anchors, inspired by [Red+16; Gir15]. Each anchor has at most one

sprite; we call it inactive if it has none.

composite

dictionary

place sprites
at active anchors

la
ye

r 1
la

ye
r 2

apply local
transforms

apply random
z-ordering

Figure 5-2: Layered sprite decomposition with
local anchors. We assign at most one sprite per
anchor and predict a local transformation of
each placed sprite around its anchor. To allow
for occlusions between sprites, we use multiple
sprite layers, which we compose back to front to
obtain the final image.

pConv.
GroupNorm
LeakyReLU

input frame

layer 1
anchors

switches

switches

layer
anchors

linear projection

LayerNorm

Figure 5-3: Encoder architecture.

We give the sprites freedom of motion

around their anchors to factorize structures

that may not be aligned with the anchor grid.

This local—Eulerian—viewpoint makes infer-

ence tractable and avoids thepitfalls of tracking

the global motion of all the sprites across the

canvas (a Lagrangian viewpoint). To enable

multiple layers with sprite occlusions, we out-

put ℓ > 1 anchor grids for each frame (ℓ = 2
in our experiments). Fig. 5-2 illustrates our lay-

ered anchor grids and local sprite transforma-

tions.

We use a convolutional encoder ℰ to map

the 𝑤×ℎ RGB frame 𝛪𝑖 to ℓ grids of anchors,
with resolution 2𝑤

𝑘 × 2ℎ
𝑘 . Each anchor 𝑗 in layer

𝑙 is represented by a feature vector 𝑎𝑙𝑗 ∈ ℝ𝑑 characterizing local image appearance around the an-

101

chor and an active/inactive switchprobability𝑝𝑙𝑗 ∈ [0, 1]. Our frame encoder contains log2(𝑘)−1
downsampling blocks, which use partial convolutions [Liu+18] with kernel size 3 and stride 2 (for

downsampling), Group Normalization, and Leaky ReLU. It produces a tensor of intermediate

features for each layer, which are normalized with LayerNorm. From these, we obtain the an-

chor switches with an MLP with one hidden layer of size 𝑑 followed by Group Normalization

and Leaky ReLU.We get anchor features using a linear projection followed by LayerNorm. The

encoder architecture is illustrated in Fig. 5-3.

5.3.3 Per-anchor sprite selection

Once we have the layered anchor grids for the input frame, we need to assign sprites to the active

anchors. We do this by scoring every dictionary element 𝑖 against each anchor 𝑗 at layer 𝑙, using a
softmax over dot products between dictionary codes and anchor features:

𝑠𝑙𝑖𝑗 =
exp (𝑎𝑙𝑗⋅𝑧𝑖/√𝑑)

∑𝑚
𝑘=1 exp (𝑎

𝑙
𝑗⋅𝑧𝑘/√𝑑) . (5.1)

Recall that both the anchor features anddictionary latent codes are individually normalizedusing

Layer Normalization. Restricting both latent spaces to a compact subspace helps stabilize the

optimization and avoid getting stuck in local optima. During training, each anchor’s sprite is a

weighted combination of the dictionary elements, masked by the anchor’s active probability:

𝑆𝑙𝑗 = 𝑝𝑙𝑗
𝑚
∑
𝑖=1

𝑠𝑙𝑖𝑗𝛲𝑖. (5.2)

This soft selection allows gradients to propagate to both dictionary and anchor features during

training. Except for natural image and video datasets, at test time, we use hard selections, i.e., each

anchor, we pick the sprite (𝑆𝑙𝑗 ∶= 𝛲𝑖) with highest score 𝑠𝑙𝑖𝑗 and binarize the switches 𝑝𝑙𝑗 ∈ {0, 1}.

5.3.4 Local sprite transformations

In real animations, sprites rarely perfectly alignwith our regular anchor grid, so, to avoid learning

several copies of the same sprites (e.g., all sub-grid translations of a given image pattern), we allow

sprites to move around their anchors. In our implementation, we only allow 2D translations of

102

In
pu

t

Slot 1 Slot 2 Slot 3 Slot 4 Slot 4 Slot 6 Slot 7Reconstruction

Reconstruction Foreground Background Layer 1 Layer 2 Sprite DictionaryReconstruction

SP
A

C
E

Sl
ot

 A
tte

nt
io

n

O
ur

s

Figure 5-4: Comparison to SPACE [Lin+20] and Slot Attention [Loc+20]. While all methods
obtain good reconstructions, SPACE only recognizes a few sprites, and Slot Attention does not
yield a meaningful decomposition. We decompose the entire foreground and learn a dictionary.

up to 1/2 the sprite size on each side of the anchor, i.e.,𝒯𝑙
𝑗 = (𝑥𝑙𝑗, 𝑦𝑙𝑗) ∈ [−𝑘/2, 𝑘/2]2.

Weuse a convolutional network to predict the translation offsets from the anchor’s sprite and

a crop of the input frame centered around the anchor, with identical spatial dimensions. This net-

work follows the architecture ofℰ followedby anMLPwith a single hidden layer of size𝑑, Group
Normalization, and Leaky ReLU. Specifically, we concatenate the image crop and the anchor’s

sprite 𝑆𝑙𝑗 along the channel dimension and pass this tensor through this network to obtain the

𝑥𝑙𝑗 and 𝑦𝑙𝑗 offsets. An output layer projects to two dimensions (horziontal and vertical shift) and

applies tanh to restrict the range. We apply the shifts using a spatial transformer [Jad+15].

5.3.5 Compositing and reconstruction

Each anchor in our layered representation is now equipped with a sprite 𝑆𝑙𝑗 and a transformation

𝒯𝑙
𝑗 . For each layer 𝑙, we transform the sprites in their anchor’s local coordinate system and render

them onto the layer’s canvas, initialized as fully transparent. Because of the local transformation,

neighboring sprites within a layer may overlap. When this happens, we randomly choose an or-

dering, as in Fig. 5-2. This randompermutation encourages ourmodel to either avoid overlapping

sprites within the same layer or make the sprite colors agree in the overlap region, since these are

the only two options that yield the same rendering regardless of the random 𝑧-ordering. Note

103

that sprites on distinct layers are not shuffled. The shuffling prevents the network from abusing

the compositing to cover patches with others from the same layer.

We optionally learn a background texture to capture elements that cannot be explained using

sprites. This can be thought of as a special patch of resolution greater than that of a single frame.

For each frame, we learn a (discrete) position offset in the background from which to crop. We

represent these offsets as discrete pixel shifts using a softmax classification (independently for each

spatial dimension). We found this encoding better behaved than using a continuous offset with

a spatial transformer—the discrete encoding allows the gradient signal to propagate to all shifts

rather than the weak local gradient from bilinear interpolation (see Section 5.4.3 for an ablation).

We combine the background and sprite layers via standard alpha compositing [PD84]. Fig. 5-7

shows a learned background.

In some experiments, we use a simpler backgroundmodel: a fixed solid color, determined by

analyzing the data before training. In this variant, we sample 100 frames, cluster the pixel values

into 5 clusters using 𝑘-means, and choose the largest cluster center as the background color.

5.3.6 Training procedure

Our pipeline is fully differentiable. We train the latent codes dictionary, sprite generator, frame

encoder, transformation predictor, and background layer jointly, minimizing 𝐿2 distance be-
tween our reconstructions and ground truth frames. We also employ two regularizers: a beta

distribution prior on switches and dictionary element scores favors values close to 0 or 1, and an

𝐿1 loss on switches favors a sparser solution. Our final loss function for a single input is:

ℒ(⋅) = 1
𝑤ℎ‖𝛰 − 𝛪‖22

+ 𝑘2
4ℓ𝑤ℎ

ℓ
∑
𝑙=1

2𝑤
𝑘 ×2ℎ𝑘
∑
𝑗=1

[𝜆Beta (1
𝑚

𝑚
∑
𝑖=1

Beta(2, 2)(𝑠𝑙𝑖𝑗) + Beta(2, 2)(𝑝𝑙𝑗)) + 𝜆sparse|𝑝𝑙𝑗|] ,
(5.3)

where 𝛰 is the result of compositing the background and sprite layers; we optimize {𝑠𝑙𝑖𝑗}, {𝑝𝑙𝑗},
and 𝛰. We set 𝜆sparse = 0.005 and train for 200,000 steps (∼ 20 hours) with 𝜆Beta = 0.002 and
finetune for 10,000 steps with 𝜆Beta = 0.1. For natural images and video, we set 𝜆Beta = 0. We

104

In
pu

t

Reconstruction Layer 1 Layer 2 Sprite Dictionary
O

ur
s

Reconstruction Foreground

SP
A

C
E

G
ro

un
d

Tr
ut

h
Se

gm
en

ta
tio

n

Segmentation

Segmentation

Figure 5-5: Qualitative comparison to SPACE [Lin+20] on the synthetic game dataset. We show
ground truth sprite segmentations as well as those obtained from the learned SPACE foreground
and from our learned sprites. While SPACE only learns several of the sprites, we reconstruct the
entire foreground using our dictionary.

use the AdamW [LH19] optimizer on a GeForce GTX 1080GPU, with batch size 4 and learning

rate 0.0001, except for the background module (learning rate 0.001 when used).

5.4 Experimental results

We evaluate our self-supervised decomposition on several real (non-synthetic) datasets, compare

to related work, and conduct an ablation study. In figures, we use a checkerboard to show trans-

parency. Dictionary order is determined by sorting along a 1-dimensional 𝑡-SNE embedding of

the sprite latent codes. We find this ordering tends to group semantically similar sprites, making

the dictionary easier to interpret andmanipulate. While ourmodels are trainedwith a dictionary

of 150 patches, not all patches end up being used; we only show the used patches.

5.4.1 Comparisons

While to our knowledge no prior works target differentiable sprite-based reconstruction, we com-

pare to two state-of-the-art methods that obtain similarly disentangled representations.

In Fig. 5-4, we compare to SPACE [Lin+20] and Slot Attention [Loc+20]. The former de-

composes a scene into a foreground layer consisting of several objects as well as a background,

segmented into three layers. The latter deconstructs a scene into discrete “slots.” We train both

methods to convergence using their default parameters. While both reconstruct the input frames

faithfully, SPACE only recognizes a few sprites in its foreground layer, and Slot Attention does

105

not provide a semantically meaningful decomposition. In contrast, not only does our method

model the entire scene using learned sprites, but also it factors out the sprites to form a consistent,

sparse dictionary shared for the entire sequence.

Additionally,we evaluate on a synthetically-generated sprite-based game from[Dub+18],which

is made of sprites on a solid background. We compare quantitatively to SPACE in Table 5.1 and

show qualitative results in Fig. 5-5. Since we have a ground truth segmentation of each scene into

sprites, we compute a matching between learned dictionary patches and sprites by associating

each patch with the sprite that it most frequently overlaps. We visualize dictionary patches next

to their respective sprites. We also use this labeling to compute segmentation metrics. In partic-

ular, we report mean IoU in the multiclass case (where each sprite is a distinct class) as well is in

the binary case (foreground/background). Because SPACE does not learn a common dictionary,

we are unable to obtain a labeling for its foreground elements and, thus, cannot evaluate its mul-

ticlass metric. For the binary metric, we obtain a significantly higher value, since SPACE defers

many sprites to the background, whereas our method learns the sprites as dictionary elements.

(b) Online Dictionary Learning

Input Flow-Based Ours

(a) Segmentation

Figure 5-6: Comparison to
conventional baselines.

To show that our model learns more than simple motion fea-

tures, we also compare to two conventional (non-learning) base-

lines. In Fig. 5-6a, we compare a segmentation of a frame obtained

by clustering optical flow directions using 𝑘-means (inspired by

Liu et al. [Liu+05]) to one generated using our learned decomposi-

tion. The flow-based approach is unable to capturemanyof the de-

tails in the frame. In Fig. 5-6b, we show the normalized dictionary

obtained using an online dictionary learning method [Mai+10].

Because this method does not have the inductive biases of our model, the resulting dictionary

is not easily interpretable or editable.

Table 5.1: Comparison to SPACE [Lin+20]. We report PSNR to evaluate reconstruction quality
as well as mean IoU for multiclass and binary foreground/background segmentation problems.
Our method recognizes significantly more sprites than SPACE, resulting in higher mean IoU.

Method Reconstruction PSNR Mean IoU (multiclass) Mean IoU (binary)

SPACE [Lin+20] 31.9 - 0.0361
Ours 38.54 0.6497 0.7352

106

5.4.2 Sprite-based game deconstruction

We train onFightingHero (one level, 5,330 frames),Nintendo SuperMarioBros. (one level, 2,220

frames), and ATARI Space Invaders (5,000 frames). We use patch size 𝑘 = 32 for Mario and

Fighting Hero and 𝑘 = 16 for Space Invaders. For Fighting Hero, we learn a background, as

described in Section 5.3.5.

Learned Background

Sprite DictionaryInput Layer 1 Layer 2Reconstruction

Input Layer 1 Layer 2Reconstruction

Sprite Dictionary

Sprite DictionaryInput Layer 1 Layer 2Reconstruction

Figure 5-7: Sprite-based gamedecompositions. Our self-supervised technique recovers a compact
dictionary of semantically meaningful sprites representing characters (or their body parts) and
props. The first example shows our learned background texture; the others use a solid color as
background.

107

Table 5.2: Ablation study onMario data across five random seeds.

Model PSNR

Smaller patches 28.85 ± 0.95
Full 28.04 ± 0.72

No LayerNorm 26.05 ± 0.45
Smaller dictionary 23.80 ± 1.38
Larger patches 23.63 ± 1.05

Straight-through switches 22.15 ± 0.25

select learned sprite move learned spritestarting frame

Figure 5-8: Editing GUI.

The sprites, background, and example frame recon-

structions are shown in Fig. 5-7. Our model successfully

disentangles foreground from background and recovers

a reasonable sprite sheet for each game. Having reverse-

engineered the games, we can use the decomposition for applications like editing. In Fig. 5-8, we

demonstrate a GUI that allows the user to move sprites around the screen.

5.4.3 Ablation study

Figure 5-9: Mario dictionary with small patches.

We show an ablation study on the Mario data.

We train our fullmodel, onewith smaller16×16
patches, another with larger 64×64 patches, a
model with a smaller dictionary (25 elements), a model without LayerNorm, and one where we

use a straight-through estimator [JGP17] to learndiscrete switches𝑝𝑙𝑗 in lieu ofBeta regularization.
We train each model with five random seeds and report the reconstruction PSNR means and

standard deviations in Table 5.2. This experiment verifies the importance of LayerNorm in our

architecture and shows that the straight-through trick is ineffective in our setting. Though the

smaller patches model achieves slightly higher mean PSNR than our full model, more of the

sprites are split across dictionary patches (Fig. 5-9), illustrating how the patch size choice sets an

inductive bias for our decomposition.

Figure 5-10: Background learned
with spatial transformer.

We also justify our choice for learning background shifts

via classification (Section 5.3.5) rather than regression, i.e., us-

ing spatial transformers. Figure 5-10 shows the background

108

Input Layer 1 Layer 2Reconstruction

Sprite DictionaryLearned Background

Segmentation

Labeled Sprite Dictionary

Figure 5-12: Segmentation of natural videos. Despite its simplisticmotion and appearancemodel,
our approach can be applied to real-world videos. By selecting the few sprites corresponding to
the tennis player, we can quickly obtain a segmentation of the full video sequence.

learned using a spatial transformer. In contrast to our full model (Fig. 5-7), the original back-

ground is not discovered, and most of the canvas is unused. We suspect that this is due to lack of

gradient signal from background pixels that do not get rendered at each training step.

5.4.4 Future directions and limitations

Input

Reconstruction

Sprite Dictionary

Figure 5-11: Photograph factor-
ized into a compact dictionary.

While our method is designed with sprite-based animation in

mind, it can generalize to natural images and videos. An excit-

ing direction for future work is to incorporate more expressive

transformations so as to discover recurring content in generic

videos. Here, we obtain preliminary results using our approach

and achieve interesting decompositions even withoutmodifica-

tions to our sprite-based model.

In Fig. 5-12, we show results on a tennis video (4,000

frames). The model learns parts of the player’s body (head,

limbs, shirt, etc.) as sprites and captures most of the tennis

court in the learned background. By simply selecting the player

sprites in the dictionary, we segment the entire video clip.

Our model can also discover recurring patterns in a single

natural image. We train on random crops of a 768×512 pho-

109

Input Reconstruction Sprite Dictionary

Figure 5-13: Reconstructionof a scanned text excerpt, illustrating some limitations of ourmethod.
Because letters are densely packed within the text and lack motion cues, our model learns sprites
comprising more than a single glyph and suffers from high reconstruction error.

tograph from the 2013 US Presidential Inauguration,1 which contains many repeating elements

such as stairs, columns, and people. With a dictionary of 39 32×32 sprites (39,936 pixels), we

recover much of the detail of the original 393,216 pixels.

We also apply our approach to automatic font discovery. We train on random 128×128 crops
of six scanned pages ofMobyDick, each of approximately 500×800 resolution. Figure 5-13 shows
an input text excerpt, our reconstruction, and the learned dictionary.

This dataset differs significantly from our other testing datasets. Each input frame consists

ofmany densely packed sprites (∼100 glyphs in each 128×128 crop), andmany individual glyphs

consist of smaller repeating elements. Wehypothesize that because of these issues, combinedwith

a lack ofmotion cues between frames, we donot achieve a perfect reconstruction, learning certain

sprites with multiple glyphs and others with just partial glyphs. Incorporating priors tailored to

regularly structured and dense data like text is a direction for future research.

5.5 Discussion

Wepresent a self-supervisedmethod to jointly learn a patch dictionary and a frame encoder from

a video, where the encoder explains frames as compositions of dictionary elements, anchored on a

regular grid. By generating layers of alpha-masked sprites and predicting per-sprite local transfor-

mation, we recover fine-scale motion and achieve high-quality reconstructions with semantically

meaningful, well-separated sprites. Applied to content with significant recurrence, our approach

recovers structurally significant patterns.

Understanding recurringpatterns and their relationships is central tomachine learning. Learn-

ing to act intelligently in video games or in the physical world requires breaking experiences down
1AP Photo/Cliff Owen

110

into elements between which knowledge can be transferred effectively. Our sprite-based decom-

position provides an intuitive basis for this purpose.

In this chapter, we focused on a simplified video domain. In the future, we would like to ex-

pand the range of deformations applied to the learned dictionary elements, such as appearance or

shape changes. Combining this machinery with some of the techniques we developed for learn-

ing parametric geometry in Chapter 3, could further motivate unsupervised approaches to the

discovery and analysis of textured objects. For example, we could consider analyzing trajectories

and dynamics of sprites by learning spline curves in time, or we could learn textured 3D mod-

els, relying on a patch-based parameterization. Our work opens significant avenues for future

research to explore recurrences and object relationships in more complex domains.

111

6

Conclusion

Themethods and experiments presented in this thesis demonstrate howmaking a geometry a first-

class citizen in applications of deep learning to shape data can result in more intuitive and useful

algorithms. Rather than trying to shoehorn shape representations into a format that works with

standard architectures and treating the deep network as a black box with fixed input and output,

we instead consider the specific properties unique to the data that we have access to or that we

require for downstream tasks. For example, we extract features based on the underlying surface

approximated by a triangle mesh instead of naively relying on the combinatorial structure, and

we consider the parameterization used to define CAD primitives when designing corresponding

loss functions.

Fortunately, we often do not need to reinvent the wheel to design sensible learning method-

ologies. There is a rich literature in mathematics and computer science of machinery for process-

ing, analyzing, and producing the types of geometry common in many applications. By familiar-

izing ourselves with these classical approaches and theories, we can design the proper inductive

biases in our machine learning models.

This paradigm for designing learning algorithms inspires many exciting directions for future

work. We can consider other common tasks in geometry processing, like geometric flows or pa-

rameterizations, that could benefit from the data-rich setting of machine learning. We could also

look at creating sensible learning approaches that operate on other non-uniform shape modali-

ties. For instance, we could learn from collection of shape data in the form of volumetric tetra-

hedral or hexahedral meshes, often used in simulation, or from digital sculpting models, pop-

112

ular with modern virtual or augmented reality input modalities. Beyond considering methods

tailored specifically to individual applications or representations, we could also look towards uni-

fied multi-modal geometric machine learning models. Recent methods have shown impressive

results by learning simultaneously from various data formats, like images and text [Rad+21] or

various types of sensor data [Che+22]. Perhaps by learning on different shape modalities at the

same time, using a system that is aware of the specific mathematical features of each individual

representation, we can learn a whole that is greater than each of its parts.

113

Bibliography

[Aks+17] Yağiz Aksoy, Tunç Ozan Aydin, Aljoša Smolić, and Marc Pollefeys. “Unmixing-
Based Soft Color Segmentation for Image Manipulation”. In: ACM Transactions
on Graphics 36.2 (2017), pp. 1–19 (cit. on p. 98).

[Aks+18] Yağiz Aksoy, Tae-Hyun Oh, Sylvain Paris, Marc Pollefeys, and Wojciech Matusik.
“Semantic Soft Segmentation”. In:ACMTransactions onGraphics 37.4 (2018), pp. 1–
13 (cit. on p. 98).

[AL20] MatanAtzmon andYaronLipman. “SAL: SignAgnostic Learning of Shapes From
Raw Data”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2020 (cit. on pp. 12, 80, 95).

[ASC11] MathieuAubry,Ulrich Schlickewei, andDaniel Cremers. “TheWaveKernel Signa-
ture: A QuantumMechanical Approach to Shape Analysis”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). 2011, pp. 1626–
1633 (cit. on pp. 18, 35).

[AT16] James Atwood and Don Towsley. “Diffusion-Convolutional Neural Networks”.
In: Advances in Neural Information Processing Systems. 2016, pp. 1993–2001 (cit.
on p. 20).

[Au+11] Oscar Kin-Chung Au, Youyi Zheng, Menglin Chen, Pengfei Xu, and Chiew-Lan
Tai. “Mesh Segmentation with Concavity-Aware Fields”. In: IEEE Transactions on
Visualization and Computer Graphics 18.7 (2011), pp. 1125–1134 (cit. on p. 18).

[Aza+18] Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman,
and Trevor Darrell. “Multi-Content GAN for Few-Shot Font Style Transfer”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). Vol. 11. 2018, p. 13 (cit. on pp. 46, 65, 66).

[Bal+18] ElenaBalashova,Amit Bermano,VladimirG.Kim, StephenDiVerdi, AaronHertz-
mann, and Thomas Funkhouser. “Learning A Stroke-Based Representation for
Fonts”. In: Computer Graphics Forum. 2018 (cit. on p. 46).

[Bau+19a] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenenbaum,
William T Freeman, and Antonio Torralba. “GAN Dissection: Visualizing and
UnderstandingGenerativeAdversarialNetworks”. In: InternationalConference on
Learning Representations (ICLR). 2019 (cit. on p. 98).

114

[Bau+19b] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei
Zhou, and Antonio Torralba. “Seeing What a GAN Cannot Generate”. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV).
2019, pp. 4502–4511 (cit. on p. 98).

[BB10] Michael Bronstein and Alexander Bronstein. “Shape Recognition with Spectral
Distances”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
33.5 (2010), pp. 1065–1071 (cit. on p. 18).

[BC15] Srinivas Bachu andKManjunathaChari. “A review onmotion estimation in video
compression”. In: International Conference on Signal Processing and Communica-
tion Engineering Systems. IEEE, 2015, pp. 250–256 (cit. on p. 99).

[Ben+10] Mirela Ben-Chen, Adrian Butscher, Justin Solomon, and Leonidas Guibas. “On
Discrete Killing Vector Fields and Patterns on Surfaces”. In: Computer Graphics
Forum. Vol. 29. 2010, pp. 1701–1711 (cit. on p. 19).

[Ber+99] Fausto Bernardini, Chandrajit L Bajaj, JindongChen, andDaniel R Schikore. “Au-
tomaticReconstruction of 3DCADModels fromDigital Scans”. In: International
Journal of Computational Geometry&Applications 9.4 (1999), pp. 327–369 (cit. on
p. 70).

[Bes+15] Mikhail Bessmeltsev, Will Chang, Nicholas Vining, Alla Sheffer, and Karan Singh.
“Modeling Character Canvases from Cartoon Drawings”. In: ACM Transactions
on Graphics 34.5 (2015), 162:1–162:16 (cit. on p. 47).

[BK10] Michael Bronstein and Iasonas Kokkinos. “Scale-InvariantHeat Kernel Signatures
for Non-Rigid Shape Recognition”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2010, pp. 1704–1711 (cit. on
p. 19).

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer Normalization”.
In: arXiv:1607.06450 (2016) (cit. on p. 101).

[Bli82] James F Blinn. “A Generalization of Algebraic Surface Drawing”. In: ACMTrans-
actions on Graphics 1.3 (1982), pp. 235–256 (cit. on p. 76).

[BLM18] Blanche Buet, Gian Paolo Leonardi, and Simon Masnou. “Discretization and Ap-
proximation of Surfaces Using Varifolds”. In:Geometric Flows 3.1 (2018), pp. 28–56
(cit. on p. 80).

[BM19] Haïm Brezis and Petru Mironescu. “The Plateau problem from the perspective of
optimal transport”. In: Comptes Rendus Mathematique 357.7 (2019), pp. 597–612
(cit. on pp. 80, 84).

[Bog+14] Federica Bogo, Javier Romero, Matthew Loper, and Michael J Black. “FAUST:
Dataset and evaluation for 3Dmesh registration”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2014, pp. 3794–
3801 (cit. on p. 91).

[Bor84] Gunilla Borgefors. “Distance transformations in arbitrary dimensions”. In: Com-
puter Vision, Graphics, and Image Processing 27.3 (1984), pp. 321–345 (cit. on p. 48).

115

[Bos+15a] DavideBoscaini,DavideEynard,DrososKourounis, andMichaelBronstein. “Shape-
from-Operator:RecoveringShapes fromIntrinsicOperators”. In:ComputerGraph-
ics Forum. Vol. 34. 2015, pp. 265–274 (cit. on p. 19).

[Bos+15b] DavideBoscaini, JonathanMasci, SimoneMelzi,MichaelBronstein,UmbertoCastel-
lani, and Pierre Vandergheynst. “Learning class-specific descriptors for deformable
shapes using localized spectral convolutional networks”. In:Computer Graphics Fo-
rum. Vol. 34. 2015, pp. 13–23 (cit. on p. 21).

[Bos+16] DavideBoscaini, JonathanMasci, EmanueleRodolà, andMichaelBronstein. “Learn-
ing shape correspondence with anisotropic convolutional neural networks”. In:
Advances in Neural Information Processing Systems. 2016 (cit. on p. 20).

[Bra92] KennethABrakke. “TheSurfaceEvolver”. In:ExperimentalMathematics 1.2 (1992),
pp. 141–165 (cit. on p. 79).

[Bro+11] Alexander Bronstein, Michael Bronstein, Leonidas Guibas, and Maks Ovsjanikov.
“Shape Google: Geometric words and expressions for invariant shape retrieval”. In:
ACMTransactions on Graphics 30.1 (2011), pp. 1–20 (cit. on p. 18).

[Bro+17] MichaelBronstein, JoanBruna,YannLeCun,Arthur Szlam, andPierreVandergheynst.
“Geometric Deep Learning: Going beyond Euclidean data”. In: IEEE Signal Pro-
cessingMagazine 34.4 (2017), pp. 18–42 (cit. on p. 18).

[Bru+14] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral Net-
works and Locally ConnectedNetworks onGraphs”. In: International Conference
on Learning Representations (ICLR). 2014 (cit. on pp. 20, 22).

[BS19] Mikhail Bessmeltsev and Justin Solomon. “VectorizationofLineDrawings viaPolyVec-
tor Fields”. In: ACMTransactions on Graphics 38.1 (2019) (cit. on pp. 68, 76).

[Bur+19] Christopher P Burgess, LoicMatthey,NicholasWatters, RishabhKabra, IrinaHig-
gins, Matt Botvinick, and Alexander Lerchner. “MONet: Unsupervised Scene De-
composition and Representation”. In: arXiv:1901.11390 (2019) (cit. on p. 98).

[BWL20] AlexeyBochkovskiy,Chien-YaoWang, andHong-YuanMarkLiao. “YOLOv4:Op-
timal speed and accuracy of object detection”. In: arXiv:2004.10934 (2020) (cit. on
p. 10).

[Cha+15] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong
Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D Model Repository.
Tech. rep. arXiv:1512.03012. StanfordUniversity—PrincetonUniversity—Toyota
Technological Institute at Chicago, 2015 (cit. on pp. 44, 66, 68).

[Che+05] Joseph JacobCherlin, Faramarz Samavati,MarioCosta Sousa, and JoaquimA. Jorge.
“Sketch-based Modeling with Few Strokes”. In: Proceedings of the 21st Spring Con-
ference on Computer Graphics. 2005, pp. 137–145 (cit. on p. 47).

[Che+13] TaoChen, Zhe Zhu, Ariel Shamir, Shi-MinHu, andDaniel Cohen-Or. “3-Sweep”.
In: ACMTransactions on Graphics 32.6 (2013), pp. 1–10 (cit. on p. 47).

116

[Che+16] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. “InfoGAN: Interpretable Representation Learning by InformationMaxi-
mizing Generative Adversarial Nets”. In: Advances In Neural Information Process-
ing Systems. 2016 (cit. on p. 98).

[Che+22] XuanyaoChen,TianyuanZhang,YueWang,YilunWang, andHangZhao. “FUTR3D:
AUnifiedSensorFusionFramework for 3DDetection”. In:arXiv::2203.10642 (2022)
(cit. on p. 113).

[Cho+16] ChristopherBChoy,DanfeiXu, JunYoungGwak,KevinChen, andSilvio Savarese.
“3D-R2N2: AUnifiedApproach for Single andMulti-view 3DObject Reconstruc-
tion”. In:Proceedings of theEuropeanConference onComputerVision (ECCV). Springer,
2016, pp. 628–644 (cit. on p. 45).

[CK14] Neill DF Campbell and Jan Kautz. “Learning a Manifold of Fonts”. In: ACM
Transactions on Graphics 33.4 (2014), p. 91 (cit. on p. 46).

[Cla+17] SebastianClaici,Mikhail Bessmeltsev, Scott Schaefer, and Justin Solomon. “Isometry-
Aware Preconditioning forMeshParameterization”. In:ComputerGraphics Forum.
Vol. 36. 2017, pp. 37–47 (cit. on pp. 19, 27).

[CLV20] David Cohen-Steiner, André Lieutier, and Julien Vuillamy. “Lexicographic Op-
timal Homologous Chains and Applications to Point Cloud Triangulations”. In:
Proceedings of the 36th International SymposiumonComputationalGeometry. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020 (cit. on p. 80).

[CMP20] Julian Chibane, Aymen Mir, and Gerard Pons-Moll. “Neural Unsigned Distance
Fields for Implicit Function Learning”. In: Advances in Neural Information Pro-
cessing Systems. 2020 (cit. on p. 13).

[Col+08] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher, Heather Stoddart Barros,
Adam Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz. “Where do
people draw lines?” In:ACMTransactions onGraphics 27.3 (2008), pp. 1–11 (cit. on
p. 68).

[Con67] Paul Concus. “Numerical Solution of the Minimal Surface Equation”. In:Mathe-
matics of Computation 21.99 (1967), pp. 340–350 (cit. on p. 79).

[Coo67] S. A. Coons. Surfaces for Computer-Aided Design of Space Forms. Tech. rep. Mas-
sachusetts Institute of Technology, 1967 (cit. on p. 55).

[Cor+17] Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks
Ovsjanikov. “Functional Characterization of Intrinsic and Extrinsic Geometry”.
In: ACMTransactions on Graphics 36.2 (2017), pp. 1–17 (cit. on p. 19).

[Cos+19] Luca Cosmo,Mikhail Panine, Arianna Rampini, Maks Ovsjanikov,Michael Bron-
stein, and Emanuele Rodolà. “Isospectralization, or how to hear shape, style, and
correspondence”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019, pp. 7529–7538 (cit. on p. 19).

[CP20] Eric Crawford and Joelle Pineau. “Exploiting Spatial Invariance for Scalable Un-
supervised Object Tracking”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 34. 2020, pp. 3684–3692 (cit. on p. 98).

117

[CPK18] Yoni Choukroun, Gautam Pai, and Ron Kimmel. “Sparse approximation of 3D
meshes using the spectral geometry of the Hamiltonian operator”. In: Journal of
Mathematical Imaging and Vision 60.6 (2018), pp. 941–952 (cit. on p. 18).

[CPS11] Keenan Crane, Ulrich Pinkall, and Peter Schröder. “Spin Transformations of Dis-
crete Surfaces”. In: ACM Transactions on Graphics 30.4 (2011), pp. 1–10 (cit. on
p. 79).

[CT14] Nicolas Charon and Alain Trouvvé. “Functional Currents: a new mathematical
tool to model and analyse functional shapes”. In: Journal of Mathematical Imag-
ing and Vision 48.3 (2014), pp. 413–431 (cit. on p. 80).

[CTZ20] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. “BSP-Net: Generating Com-
pact Meshes via Binary Space Partitioning”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2020 (cit. on pp. 13,
81).

[CW13] Ken Chan and Justin Wan. “Reconstruction of Missing Cells by a Killing Energy
MinimizingNonrigid ImageRegistration”. In: InternationalConference of the IEEE
Engineering inMedicine and Biology Society. 2013, pp. 3000–3003 (cit. on p. 19).

[CZ19] ZhiqinChen andHaoZhang. “Learning Implicit Fields forGenerative ShapeMod-
eling”. In:Proceedings of the IEEE/CVFConference onComputerVisionandPattern
Recognition (CVPR). 2019, pp. 5939–5948 (cit. on pp. 12, 78, 80).

[Dai+21] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. “CoAtNet: Marrying
Convolution and Attention for All Data Sizes”. In: Advances In Neural Informa-
tion Processing Systems. 2021 (cit. on p. 10).

[DBV16] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering”. In: Advances
in Neural Information Processing Systems. Vol. 29. 2016, pp. 3844–3852 (cit. on
p. 20).

[Del+18] JohannaDelanoy,MathieuAubry,Phillip Isola,AlexeiAEfros, andAdrienBousseau.
“3D Sketching using Multi-View Deep Volumetric Prediction”. In: Conference on
Computer Graphics and Interactive Techniques 1.1 (2018), pp. 1–22 (cit. on pp. 12, 44,
47, 72, 80).

[Den+20] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton,
and Andrea Tagliasacchi. “CvxNet: Learnable Convex Decomposition”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020 (cit. on pp. 13, 81).

[Des+05] Mathieu Desbrun, Anil Hirani, Melvin Leok, and Jerrold E Marsden. “Discrete
Exterior Calculus”. In: arXiv:math/0508341 (2005) (cit. on p. 24).

[Des+99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. “Implicit Fair-
ing of Irregular Meshes using Diffusion and Curvature Flow”. In: Proceedings of
the 26th Annual Conference on Computer Graphics and Interactive Techniques. 1999,
pp. 317–324 (cit. on p. 79).

118

[DH11] NathanMDunfield and Anil NHirani. “The Least Spanning Area of a Knot and
the Optimal Bounding Chain Problem”. In: Proceedings of the 27th Annual Sym-
posium on Computational Geometry. 2011, pp. 135–144 (cit. on p. 80).

[DHK11] Tamal K Dey, Anil N Hirani, and Bala Krishnamoorthy. “Optimal Homologous
Cycles, Total Unimodularity, and Linear Programming”. In: SIAM Journal on
Computing 40.4 (2011), pp. 1026–1044 (cit. on p. 80).

[DL16] Chao Ding and Ligang Liu. “A Survey of Sketch Based Modeling Systems”. In:
Frontiers of Computer Science 10.6 (2016), pp. 985–999 (cit. on p. 47).

[Dou27] Jesse Douglas. “A Method of Numerical Solution of the Problem of Plateau”. In:
Annals of Mathematics (1927), pp. 180–188 (cit. on p. 79).

[DQN17] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner. “Shape Completion
using 3D-Encoder-Predictor CNNs and Shape Synthesis”. In: Proceedings of the
IEEE/CVFConference onComputerVision andPatternRecognition (CVPR). Vol. 3.
2017 (cit. on p. 46).

[DSO20] Nicolas Donati, Abhishek Sharma, andMaks Ovsjanikov. “Deep Geometric Func-
tionalMaps:Robust FeatureLearning for ShapeCorrespondence”. In:Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2020, pp. 8592–8601 (cit. on p. 22).

[Du+18] TaoDu, JeevanaPriya Inala, YewenPu,AndrewSpielberg,Adriana Schulz,Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. “InverseCSG: Automatic
Conversion of 3DModels to CSG Trees”. In: ACMTransactions on Graphics 37.6
(2018) (cit. on p. 76).

[Dub+18] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Thomas L. Griffiths, and Alexei A.
Efros. “Investigating Human Priors for Playing Video Games”. In: Proceedings of
the 35th International Conference onMachine Learning. 2018 (cit. on p. 106).

[Dur+08] Stanley Durrleman, Xavier Pennec, Alain Trouvé, Paul Thompson, and Nicholas
Ayache. “Inferring brain variability from diffeomorphic deformations of currents:
an integrative approach”. In:Medical Image Analysis 12.5 (2008), pp. 626–637 (cit.
on p. 80).

[Dur+09] Stanley Durrleman, Xavier Pennec, Alain Trouvé, and Nicholas Ayache. “Statisti-
cal models of sets of curves and surfaces based on currents”. In: Medical Image
Analysis 13.5 (2009), pp. 793–808. issn: 1361-8415 (cit. on p. 80).

[Dur+11] Stanley Durrleman, Pierre Fillard, Xavier Pennec, Alain Trouvé, and Nicholas Ay-
ache. “Registration,AtlasEstimation andVariabilityAnalysis ofWhiteMatter Fiber
Bundles Modeled as Currents”. In: NeuroImage 55.3 (2011), pp. 1073–1090. issn:
1053-8119 (cit. on p. 80).

[Dut+20] Ionut Cosmin Duta, Li Liu, Fan Zhu, and Ling Shao. “Pyramidal Convolution:
RethinkingConvolutionalNeuralNetworks forVisualRecognition”. In:arXiv:2006.11538
(2020) (cit. on p. 10).

[Dzi90] Gerhard Dziuk. “An algorithm for evolutionary surfaces”. In:Numerische Mathe-
matik 58.1 (1990), pp. 603–611 (cit. on p. 79).

119

[EH96] Matthias Eck and Hugues Hoppe. “Automatic Reconstruction of B-Spline Sur-
faces ofArbitraryTopological Type”. In:Proceedings of the 23rdAnnual Conference
on Computer Graphics and Interactive Techniques. 1996, pp. 325–334 (cit. on p. 70).

[EM03] David S Ebert and F Kenton Musgrave. Texturing and Modeling: A Procedural
Approach. Morgan Kaufmann, 2003 (cit. on p. 51).

[Ent+15] Even Entem, Loic Barthe, Marie-Paule Cani, Frederic Cordier, andMichiel van de
Panne. “Modeling 3D Animals from a Side-view Sketch”. In: Computer Graphics
46 (C 2015), pp. 221–230 (cit. on p. 47).

[Esl+16] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Ko-
ray Kavukcuoglu, and Geoffrey E Hinton. “Attend, Infer, Repeat: Fast Scene Un-
derstandingwithGenerativeModels”. In:Proceedings of the 30th InternationalCon-
ference on Neural Information Processing Systems. 2016 (cit. on p. 98).

[ET20] Moshe Eliasof and Eran Treister. “DiffGCN: Graph Convolutional Networks via
Differential Operators and Algebraic Multigrid Pooling”. In: Advances in Neural
Information Processing Systems. 2020 (cit. on p. 22).

[Fed96] Herbert Federer.GeometricMeasureTheory. Springer, 1996. isbn: 978-3-540-60656-
7 (cit. on pp. 80, 81, 84).

[Fen+19] Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and Yue Gao. “MeshNet:
MeshNeural Network for 3D Shape Representation”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. 2019, pp. 8279–8286 (cit. on p. 22).

[Fey+18] Matthias Fey, JanEricLenssen, FrankWeichert, andHeinrichMüller. “SplineCNN:
Fast Geometric Deep Learning with Continuous B-Spline Kernels”. In: Proceed-
ings of the IEEE/CVFConference onComputerVisionandPatternRecognition (CVPR).
2018, pp. 869–877 (cit. on p. 21).

[Fle15] Wendell H Fleming.Geometric Measure Theory at Brown in the 1960s. 2015 (cit. on
p. 80).

[FRR15] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha.
“Visual Simultaneous Localization and Mapping: A Survey”. In: Artificial Intel-
ligence Review 43.1 (2015), pp. 55–81 (cit. on p. 45).

[FSG17a] Haoqiang Fan,Hao Su, and LeonidasGuibas. “DeepPointSet: A Point Set Genera-
tionNetwork for 3DObject Reconstruction from a Single Image”. In: Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2017 (cit. on pp. 12, 45, 48).

[FSG17b] Haoqiang Fan, Hao Su, and Leonidas J Guibas. “A Point Set Generation Network
for 3DObjectReconstruction fromaSingle Image.” In:Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 2017, p. 6
(cit. on pp. 44, 80).

[Gan+18] VigneshGanapathi-Subramanian,OlgaDiamanti, Soeren Pirk, ChengchengTang,
MatthiasNiessner, andLeonidasGuibas. “ParsingGeometryUsingStructure-Aware
Shape Templates”. In: International Conference on 3D Vision (3DV). IEEE, 2018,
pp. 672–681 (cit. on p. 46).

120

[Gao+19] JunGao,ChengchengTang,VigneshGanapathi-Subramanian, JiahuiHuang,Hao
Su, and Leonidas J Guibas. “DeepSpline: Data-DrivenReconstruction of Paramet-
ric Curves and Surfaces”. In: arXiv:1901.03781 (2019) (cit. on pp. 12, 46).

[Gao+20] Jun Gao, Wenzheng Chen, Tommy Xiang, Alec Jacobson, MorganMcGuire, and
Sanja Fidler. “Learning Deformable Tetrahedral Meshes for 3D Reconstruction”.
In:Advances inNeural Information Processing Systems. Vol. 33. 2020 (cit. on p. 20).

[GDT16] FernandodeGoes,MathieuDesbrun, andYiyingTong. “Vector field processing on
triangle meshes”. In: ACM SIGGRAPH 2016 Courses. Association for Computing
Machinery, 2016, pp. 1–49 (cit. on p. 19).

[Gen+19] KyleGenova, Forrester Cole, Daniel Vlasic, Aaron Sarna,WilliamT. Freeman, and
Thomas Funkhouser. “Learning Shape Templates with Structured Implicit Func-
tions”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2019 (cit. on p. 46).

[Gen+20] KyleGenova, ForresterCole,Avneesh Sud,Aaron Sarna, andThomas Funkhouser.
“Local Deep Implicit Functions for 3D Shape”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 4857–
4866 (cit. on pp. 13, 81).

[GGH02] Xianfeng Gu, Steven Gortler, and Hugues Hoppe. “Geometry images”. In: ACM
Transactions on Graphics 21.3 (2002), pp. 355–361 (cit. on p. 21).

[Gir15] RossGirshick. “FastR-CNN”. In:Proceedings of the IEEE/CVF InternationalCon-
ference on Computer Vision (ICCV). 2015, pp. 1440–1448 (cit. on p. 101).

[GIZ09] YotamGingold, Takeo Igarashi, andDenis Zorin. “StructuredAnnotations for 2D-
to-3DModeling”. In:ACMTransactions onGraphics 28.5 (2009), p. 1 (cit. on p. 47).

[Goo+14] Ian JGoodfellow, JeanPouget-Abadie,MehdiMirza, BingXu,DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”.
In: Advances In Neural Information Processing Systems. 2014 (cit. on p. 98).

[Gro+18] Thibault Groueix,Matthew Fisher, Vladimir G. Kim, BryanRussell, andMathieu
Aubry. “AtlasNet: A Papier-MâchéApproach to Learning 3D SurfaceGeneration”.
In:Proceedings of the IEEE/CVFConference onComputerVision andPatternRecog-
nition (CVPR). 2018 (cit. on pp. 12, 44, 46, 48, 61–63, 72, 73).

[Gro+20] AmosGropp, Lior Yariv,NivHaim,MatanAtzmon, and YaronLipman. “Implicit
GeometricRegularization for Learning Shapes”. In:Proceedings ofMachine Learn-
ing and Systems. 2020, pp. 3569–3579 (cit. on pp. 12, 80).

[Gry+19] Yulia Gryaditskaya, Mark Sypesteyn, JanWillemHoftijzer, Sylvia Pont, Frédo Du-
rand, and Adrien Bousseau. “OpenSketch: A Richly-Annotated Dataset of Prod-
uct Design Sketches”. In: ACMTransactions on Graphics 38 (2019) (cit. on p. 68).

[GSI19] Yosef Gandelsman, Assaf Shocher, and Michal Irani. ““Double-DIP”: Unsuper-
vised Image Decomposition via Coupled Deep-Image-Priors”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 11026–11035 (cit. on p. 98).

121

[GTY04] Joan Glaunes, Alain Trouvé, and Laurent Younes. “Diffeomorphic matching of
distributions: A new approach for unlabelled point-sets and sub-manifolds match-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). Vol. 2. IEEE, 2004 (cit. on p. 80).

[Haf+99] Patrick Haffner, Léon Bottou, Paul GHoward, and Yann LeCun. “DjVu: Analyz-
ing and Compressing ScannedDocuments for Internet Distribution”. In: Proceed-
ings of the Fifth International Conference on Document Analysis and Recognition.
ICDAR’99 (Cat. No. PR00318). IEEE, 1999, pp. 625–628 (cit. on p. 99).

[Hai+19] Niv Haim, Nimrod Segol, Heli Ben-Hamu, Haggai Maron, and Yaron Lipman.
“Surface Networks via General Covers”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). 2019, pp. 632–641 (cit. on p. 21).

[Han+19] RanaHanocka,AmirHertz,NoaFish,RajaGiryes, Shachar Fleishman, andDaniel
Cohen-Or. “MeshCNN: A Network with an Edge”. In: ACM Transactions on
Graphics 38.4 (2019), pp. 1–12 (cit. on pp. 12, 21, 37–39, 41).

[Han+20] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. “Point2Mesh: A
Self-Prior forDeformableMeshes”. In:ACMTransactions onGraphics 39.4 (2020).
issn: 0730-0301 (cit. on pp. 20, 80).

[Hao+20] ZekunHao, Hadar Averbuch-Elor, Noah Snavely, and Serge Belongie. “DualSDF:
Semantic ShapeManipulation using a Two-Level Representation”. In:Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2020, pp. 7631–7641 (cit. on pp. 13, 81).

[Här+20] ErikHärkönen,AaronHertzmann, JaakkoLehtinen, andSylvainParis. “GANSpace:
Discovering Interpretable GAN Controls”. In: Advances In Neural Information
Processing Systems. 2020 (cit. on p. 98).

[HBL15] Mikael Henaff, Joan Bruna, and Yann LeCun. “DeepConvolutional Networks on
Graph-Structured Data”. In: arXiv:1506.05163 (2015) (cit. on p. 19).

[He+16] KaimingHe, Xiangyu Zhang, ShaoqingRen, and Jian Sun. “DeepResidual Learn-
ing for Image Recognition”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2016, pp. 770–778 (cit. on pp. 51,
60).

[He+19] ZhenHe, Jian Li, Daxue Liu,HangenHe, andDavid Barber. “Tracking byAnima-
tion: Unsupervised Learning ofMulti-Object Attentive Trackers”. In: Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2019, pp. 1318–1327 (cit. on p. 98).

[He+20] WenchongHe, Zhe Jiang, Chengming Zhang, andArpanMan Sainju. “CurvaNet:
Geometric Deep Learning based onDirectional Curvature for 3D Shape Analysis”.
In: Proceedings of the 26th ACMSIGKDD International Conference on Knowledge
Discovery &DataMining (KDD). 2020, pp. 2214–2224 (cit. on p. 21).

[Her+20] AmirHertz,RanaHanocka,RajaGiryes, andDanielCohen-Or. “DeepGeometric
Texture Synthesis”. In: ACMTransactions on Graphics 39.4 (2020) (cit. on p. 20).

122

[HFR99] Daniel Huttenlocher, Pedro Felzenszwalb, and William Rucklidge. “Digipaper: A
Versatile Color Document Image Representation”. In: Proceedings 1999 Interna-
tionalConference on Image Processing (Cat. 99CH36348). Vol. 1. IEEE, 1999, pp. 219–
223 (cit. on p. 99).

[Hil+12] KlausHildebrandt, Christian Schulz, Christoph vonTycowicz, and Konrad Polth-
ier. “Modal Shape Analysis beyond Laplacian”. In:Computer Aided Geometric De-
sign 29.5 (2012), pp. 204–218 (cit. on p. 18).

[HM16] JonathanHuang andKevinMurphy. “Efficient inference in occlusion-aware gener-
ative models of images”. In: International Conference on Learning Representations
(ICLR)Workshops. 2016 (cit. on p. 98).

[HSG18] Jingwei Huang, Hao Su, and Leonidas Guibas. “Robust Watertight Manifold Sur-
faceGenerationMethod for ShapeNetModels”. In: arXiv:1802.01698 (2018) (cit. on
p. 68).

[HSK74] MasahiroHinata,Masaaki Shimasaki, andTakeshiKiyono. “Numerical solution of
Plateau’s problem by a finite element method”. In:Mathematics of Computation
28.125 (1974), pp. 45–60 (cit. on p. 79).

[HTM19] ChristianHäne, ShubhamTulsiani, and JitendraMalik. “Hierarchical Surface Pre-
diction”. In: IEEETransactions onPatternAnalysis andMachine Intelligence (2019)
(cit. on p. 12).

[Hu+18] YuanmingHu,HaoHe, Chenxi Xu, BaoyuanWang, and Stephen Lin. “Exposure:
AWhite-BoxPhotoPost-ProcessingFramework”. In:ACMTransactions onGraph-
ics 37.2 (2018), pp. 1–17 (cit. on p. 98).

[Hua+09] Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. “Shape De-
composition using Modal Analysis”. In: Computer Graphics Forum. Vol. 28. 2009,
pp. 407–416 (cit. on p. 18).

[Hua+17] H.Huang,E.Kalogerakis, E.Yumer, andR.Mech. “ShapeSynthesis fromSketches
via Procedural Models and Convolutional Networks”. In: IEEE Transactions on
Visualization and Computer Graphics 23.8 (2017), pp. 2003–2013 (cit. on p. 47).

[Hua+19] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner,
and Leonidas Guibas. “TextureNet: Consistent Local Parametrizations for Learn-
ing from High-Resolution Signals on Meshes”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 4440–
4449 (cit. on p. 21).

[IMT99] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. “Teddy: A Sketching In-
terface for 3D Freeform Design”. In: Conference on Computer Graphics and Inter-
active Techniques. SIGGRAPH ’99. ACM Press/Addison-Wesley Publishing Co.,
1999, pp. 409–416. isbn: 0-201-48560-5 (cit. on p. 47).

[Iso+17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. “Image-to-Image
TranslationwithConditionalAdversarialNetworks”. In:Proceedings of the IEEE/CVF
Conference onComputerVisionandPatternRecognition (CVPR). 2017 (cit. onpp. 10,
43).

123

[Jad+15] Max Jaderberg,KarenSimonyan,AndrewZisserman, andKorayKavukcuoglu. “Spa-
tial Transformer Networks”. In: Advances In Neural Information Processing Sys-
tems. 2015 (cit. on p. 103).

[Jak+15] Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. “In-
stant Field-Aligned Meshes”. In: ACM Transactions on Graphics 34.6 (2015) (cit.
on pp. 71, 72).

[JF01] Nebojsa Jojic and Brendan J Frey. “Learning Flexible Sprites in Video Layers”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2001 (cit. on p. 97).

[JFK03] Nebojsa Jojic, Brendan J. Frey, and Anitha Kannan. “Epitomic analysis of appear-
ance and shape”. In:Proceedings of the IEEE/CVFInternationalConference onCom-
puter Vision (ICCV). 2003, 34–41 vol.1 (cit. on p. 99).

[JGP17] Eric Jang, ShixiangGu, andBenPoole. “CategoricalReparameterizationwithGumbel-
Softmax”. In: International Conference on Learning Representations (ICLR). 2017
(cit. on p. 108).

[Jia+19] Jindong Jiang, Sepehr Janghorbani,GerardDeMelo, andSungjinAhn. “SCALOR:
GenerativeWorldModelswithScalableObjectRepresentations”. In: International
Conference on Learning Representations (ICLR). 2019 (cit. on p. 98).

[Jus+19] Niels Justesen, Philip Bontrager, Julian Togelius, and Sebastian Risi. “Deep Learn-
ing for VideoGame Playing”. In: IEEETransactions on Games 12.1 (2019), pp. 1–20
(cit. on p. 98).

[JZD98] Anil K. Jain, YuZhong, andMarie-PierreDubuisson-Jolly. “Deformable Template
Models: A Review”. In: Signal Process. 71.2 (1998), pp. 109–129 (cit. on p. 44).

[Kal+17] EvangelosKalogerakis,MelinosAverkiou, SubhransuMaji, and SiddharthaChaud-
huri. “3D Shape Segmentation with Projective Convolutional Networks”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2017, pp. 3779–3788 (cit. on p. 22).

[Kar+20] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. “Analyzing and Improving the Image Quality of StyleGAN”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2020, pp. 8110–8119 (cit. on p. 98).

[KB14] Diederik Kingma and Jimmy Ba. “Adam: AMethod for Stochastic Optimization”.
In: International Conference on Learning Representations (ICLR). 2014 (cit. on
pp. 52, 60, 90).

[Kim+13] Vladimir G Kim, Wilmot Li, Niloy J Mitra, Siddhartha Chaudhuri, Stephen Di-
Verdi, and Thomas Funkhouser. “Learning Part-based Templates from Large Col-
lections of 3D Shapes”. In:ACMTransactions onGraphics 32.4 (2013), p. 70 (cit. on
p. 47).

124

[Kim+20] SeungWookKim,YuhaoZhou, JonahPhilion,AntonioTorralba, and Sanja Fidler.
“Learning to Simulate Dynamic Environments with GameGAN”. In: Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2020 (cit. on p. 99).

[KJF05] Anitha Kannan, Nebojsa Jojic, and Brendan J Frey. “Generative Model for Layers
of Appearance andDeformation”. In:AISTATS. Vol. 2005. Citeseer, 2005, p. 1 (cit.
on p. 97).

[KL96] Venkat Krishnamurthy and Marc Levoy. “Fitting Smooth Surfaces to Dense Poly-
gonMeshes”. In:Conference onComputerGraphics and InteractiveTechniques. SIG-
GRAPH ’96. Association for Computing Machinery, 1996, pp. 313–324. isbn: 0-
89791-746-4 (cit. on p. 70).

[Kos+18a] Adam R Kosiorek, Hyunjik Kim, Ingmar Posner, and Yee Whye Teh. “Sequential
Attend, Infer, Repeat: GenerativeModelling ofMoving Objects”. In:Advances In
Neural Information Processing Systems. 2018 (cit. on p. 98).

[Kos+18b] Ilya Kostrikov, Zhongshi Jiang, Daniele Panozzo, Denis Zorin, and Joan Bruna.
“Surface networks”. In: Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). 2018, pp. 2540–2548 (cit. on p. 22).

[Kov+11] Artiom Kovnatsky, Michael Bronstein, Alexander Bronstein, and Ron Kimmel.
“Photometric Heat Kernel Signatures”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). 2011, pp. 616–627 (cit. on p. 19).

[KSB12] Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. “Can Mean-Curvature
FlowBeMadeNon-Singular?” In:ComputerGraphics Forum. Vol. 31.WileyOnline
Library, 2012, pp. 1745–1754 (cit. on p. 79).

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. “ImageNet Classification
withDeepConvolutional Neural Networks”. In:Advances InNeural Information
Processing Systems. 2012, pp. 1097–1105 (cit. on p. 43).

[KUH18] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. “Neural 3D Mesh Ren-
derer”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2018 (cit. on p. 12).

[KW17] Thomas Kipf andMaxWelling. “Semi-Supervised Classification with Graph Con-
volutional Networks”. In: International Conference on Learning Representations
(ICLR). 2017 (cit. on pp. 20, 21).

[Lan04] Urs Lang. Introduction to Geometric Measure Theory. 2004 (cit. on pp. 81, 84).
[LB13] RoeeLitmanandAlexanderBronstein. “LearningSpectralDescriptors forDeformable

Shape Correspondence”. In: IEEE Transactions on Pattern Analysis andMachine
Intelligence 36.1 (2013), pp. 171–180 (cit. on pp. 19, 35).

[LDG18] Yiyi Liao, Simon Donné, and Andreas Geiger. “Deep Marching Cubes: Learning
Explicit Surface Representations”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2018, pp. 2916–2925 (cit. on
p. 46).

125

[Lev+18] Ron Levie, FedericoMonti, Xavier Bresson, andMichael Bronstein. “CayleyNets:
Graph Convolutional Neural Networks with Complex Rational Spectral Filters”.
In: IEEE Transactions on Signal Processing 67 (2018), pp. 97–109 (cit. on p. 20).

[LF04] XiaLiu andKikuoFujimura. “Handgesture recognitionusingdepthdata”. In:Pro-
ceedings of the Sixth IEEE International Conference on Automatic Face and Gesture
Recognition. IEEE, 2004, p. 529 (cit. on pp. 44, 48).

[LH19] Ilya Loshchilov and FrankHutter. “DecoupledWeight Decay Regularization”. In:
International Conference on Learning Representations (ICLR). 2019 (cit. on pp. 36,
105).

[Li+17] Changjian Li, Hao Pan, XinTong, Alla Sheffer, andWenpingWang. “BendSketch:
Modeling Freeform Surfaces Through 2D Sketching”. In: ACM Transactions on
Graphics 36.4 (2017) (cit. on p. 47).

[Li+18] Tzu-MaoLi,MichaëlGharbi,AndrewAdams, FrédoDurand, and JonathanRagan-
Kelley. “Differentiable Programming for Image Processing and Deep Learning in
Halide”. In: ACMTransactions on Graphics 37.4 (2018), pp. 1–13 (cit. on p. 98).

[Li+20] Tzu-Mao Li, Michal Lukáč, Michaël Gharbi, and Jonathan Ragan-Kelley. “Differ-
entiable Vector Graphics Rasterization for Editing and Learning”. In:ACMTrans-
actions on Graphics 39.6 (2020), pp. 1–15 (cit. on p. 98).

[Lia+11] Z. Lian, A. Godil, B. Bustos, M. Daoudi, J. Hermans, S. Kawamura, Y. Kurita, G.
Lavoué, H. V. Nguyen, R. Ohbuchi, Y. Ohkita, Y. Ohishi, F. Porikli, M. Reuter, I.
Sipiran,D. Smeets, P. Suetens,H.Tabia, andD.Vandermeulen. “SHREC ’11 Track:
Shape Retrieval on Non-rigid 3DWatertight Meshes”. In: Eurographics Workshop
on 3DObjectRetrieval. Ed. byH.Laga,T. Schreck,A. Ferreira,A.Godil, I. Pratikakis,
andR.Veltkamp.TheEurographicsAssociation, 2011. isbn: 978-3-905674-31-6 (cit.
on p. 38).

[Lim+18] Isaak Lim, Alexander Dielen, Marcel Campen, and Leif Kobbelt. “A Simple Ap-
proach to Intrinsic Correspondence Learning on Unstructured 3D Meshes”. In:
Proceedings of the European Conference on Computer Vision (ECCV). 2018 (cit. on
p. 22).

[Lin+18] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman, and Simon Lucey.
“ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Com-
positing”. In:Proceedings of the IEEE/CVFConference onComputerVision andPat-
tern Recognition (CVPR). 2018, pp. 9455–9464 (cit. on p. 98).

[Lin+20] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei
Deng, Jindong Jiang, and Sungjin Ahn. “SPACE: Unsupervised Object-Oriented
SceneRepresentationvia SpatialAttention andDecomposition”. In: International
Conference on Learning Representations (ICLR). 2020 (cit. on pp. 98, 103, 105, 106).

[Lip21] Yaron Lipman. “Phase Transitions, Distance Functions, and Implicit Neural Rep-
resentations”. In:Proceedings of the 38th InternationalConference onMachineLearn-
ing. 2021 (cit. on pp. 12, 80).

126

[Lit+17] Or Litany, Tal Remez, Emanuele Rodolà, Alex Bronstein, and Michael Bronstein.
“Deep FunctionalMaps: Structured Prediction forDense ShapeCorrespondence”.
In:Proceedings of the IEEE/CVFInternationalConference onComputerVision (ICCV).
2017, pp. 5659–5667 (cit. on p. 22).

[Liu+05] Ce Liu, Antonio Torralba, William T Freeman, Frédo Durand, and Edward H
Adelson. “MotionMagnification”. In:ACMTransactions on Graphics 24.3 (2005),
pp. 519–526 (cit. on p. 106).

[Liu+18] Guilin Liu, Kevin J. Shih, Ting-ChunWang, Fitsum A. Reda, Karan Sapra, Zhid-
ing Yu, Andrew Tao, and Bryan Catanzaro. “Partial Convolution based Padding”.
In: arXiv:1811.11718 (2018) (cit. on p. 102).

[Liu+20] Hsueh-TiDerekLiu,VladimirKim, SiddharthaChaudhuri,NoamAigerman, and
Alec Jacobson. “Neural Subdivision”. In:ACMTransactions onGraphics 39.4 (2020)
(cit. on p. 20).

[Liu+21] Shi-Lin Liu, Hao-Xiang Guo, Hao Pan, PengshuaiWang, Xin Tong, and Yang Liu.
“Deep Implicit Moving Least-Squares Functions for 3D Reconstruction”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2021 (cit. on p. 81).

[LJC17] Hsueh-Ti Derek Liu, Alec Jacobson, and Keenan Crane. “A Dirac Operator for
Extrinsic Shape Analysis”. In: Computer Graphics Forum. Vol. 36. 2017, pp. 139–
149 (cit. on pp. 18, 27).

[Loc+20] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahen-
dran,GeorgHeigold, JakobUszkoreit,AlexeyDosovitskiy, andThomasKipf. “Object-
Centric Learning with Slot Attention”. In: arXiv:2006.15055 (2020) (cit. on pp. 98,
103, 105).

[Lom+19] Salvator Lombardo, Jun Han, Christopher Schroers, and Stephan Mandt. “Deep
Generative Video Compression”. In: Advances in Neural Information Processing
Systems. Ed. byH.Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
and R. Garnett. Vol. 32. Curran Associates, Inc., 2019 (cit. on p. 99).

[LRS18] Chenxi Liu, Enrique Rosales, and Alla Sheffer. “StrokeAggregator: Consolidating
Raw Sketches into Artist-Intended Curve Drawings”. In: ACM Transactions on
Graphics 37.4 (2018) (cit. on p. 68).

[LSD15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully Convolutional Net-
works for Semantic Segmentation”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 3431–3440 (cit. on
p. 43).

[Lu+19] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong
Gao. “DVC: An End-to-end Deep Video Compression Framework”. In: Proceed-
ings of the IEEE/CVFConference onComputerVisionandPatternRecognition (CVPR).
2019 (cit. on p. 99).

127

[Lu+20] Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman, David Salesin, William
T. Freeman, and Michael Rubinstein. “Layered Neural Rendering for Retiming
People in Video”. In: ACMTransactions on Graphics (2020) (cit. on p. 97).

[Lu+21] Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman, William T Freeman, and
MichaelRubinstein. “Omnimatte:AssociatingObjects andTheirEffects inVideo”.
In:Proceedings of the IEEE/CVFConference onComputerVision andPatternRecog-
nition (CVPR). 2021 (cit. on p. 97).

[Lun+17] Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, and
RuiWang. “3DShapeReconstruction fromSketches viaMulti-viewConvolutional
Networks”. In: International Conference on 3D Vision (3DV). 2017 (cit. on pp. 12,
44, 47, 72, 73).

[LZ07] Rong Liu andHaoZhang. “Mesh Segmentation via Spectral Embedding andCon-
tour Analysis”. In: Computer Graphics Forum. Vol. 26. 2007, pp. 385–394 (cit. on
p. 18).

[Mai+10] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. “Online learning
for matrix factorization and sparse coding.” In: Journal of Machine Learning Re-
search 11.1 (2010) (cit. on p. 106).

[Man+18] PriyankaMandikal, K LNavaneet, Mayank Agarwal, and RVenkatesh Babu. “3D-
LMNet: Latent Embedding Matching for Accurate and Diverse 3D Point Cloud
Reconstruction from a Single Image”. In: BMVC. 2018 (cit. on p. 12).

[Mar+17] Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin
Yumer, Vladimir G. Kim, and Yaron Lipman. “Convolutional Neural Networks
on Surfaces via Seamless Toric Covers”. In: ACM Transactions on Graphics 36.4
(2017) (cit. on pp. 21, 37).

[Mas+15] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst.
“Geodesic convolutional neural networks on Riemannian manifolds”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV). 2015,
pp. 37–45 (cit. on p. 20).

[MC19] ThomasMollenhoff andDanielCremers. “Lifting vectorial variational problems: a
natural formulation based on geometricmeasure theory and discrete exterior calcu-
lus”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2019, pp. 11117–11126 (cit. on pp. 80, 94).

[Mes+19] LarsMescheder,MichaelOechsle,MichaelNiemeyer, SebastianNowozin, andAn-
dreas Geiger. “Occupancy Networks: Learning 3D Reconstruction in Function
Space”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR). 2019 (cit. on pp. 12, 78, 80).

[MHN13] A.L. Maas, A.Y. Hannun, and A.Y. Ng. “Rectifier Nonlinearities Improve Neural
NetworkAcousticModels”. In:Proceedings of the 30th International Conference on
Machine Learning. 2013 (cit. on p. 36).

128

[Mil+20a] Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, and
LucaCarlone. “Primal-DualMeshConvolutionalNeuralNetworks”. In:Advances
in Neural Information Processing Systems. 2020 (cit. on pp. 12, 21, 37–41).

[Mil+20b] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. “Nerf: Representing scenes as neural radiance fields
for view synthesis”. In: European Conference on Computer Vision. Springer, 2020,
pp. 405–421 (cit. on p. 98).

[MKK21] ThomasW.Mitchel,VladimirG.Kim, andMichaelKazhdan. “FieldConvolutions
for Surface CNNs”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV). 2021, pp. 10001–10011 (cit. on p. 21).

[Mo+19] KaichunMo,PaulGuerrero,LiYi,HaoSu,PeterWonka,NiloyMitra, andLeonidas
Guibas. “StructureNet: Hierarchical Graph Networks for 3D Shape Generation”.
In: ACMTransactions on Graphics 38.6 (2019) (cit. on p. 46).

[Mon+17] FedericoMonti,DavideBoscaini, JonathanMasci, EmanueleRodola, Jan Svoboda,
and Michael Bronstein. “Geometric deep learning on graphs and manifolds using
mixture model CNNs”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2017 (cit. on p. 20).

[Mor03] Frank Morgan. “Regularity of isoperimetric hypersurfaces in Riemannian mani-
folds”. In:Transactions of theAmericanMathematical Society 355.12 (2003), pp. 5041–
5052 (cit. on p. 86).

[Mor16] FrankMorgan.Geometric measure theory: a beginner’s guide. Academic Press, 2016
(cit. on p. 80).

[Mul+07] PatrickMullen, AlexanderMcKenzie, YiyingTong, andMathieuDesbrun. “A vari-
ational approach toEulerian geometryprocessing”. In:ACMTransactions onGraph-
ics 26.3 (2007) (cit. on p. 80).

[Nas+20] Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. “PolyGen: An
Autoregressive Generative Model of 3D Meshes”. In: Proceedings of the 37th Inter-
national Conference on Machine Learning. PMLR, 2020, pp. 7220–7229 (cit. on
pp. 12, 80).

[Nis+16] GenNishida, IgnacioGarcia-Dorado,DanielG.Aliaga, BedrichBenes, andAdrien
Bousseau. “Interactive Sketching of Urban Procedural Models”. In: ACM Trans-
actions on Graphics 35.4 (2016) (cit. on p. 47).

[NLX18] Chengjie Niu, Jun Li, and Kai Xu. “Im2Struct: Recovering 3D shape structure
from a single RGB image”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). 2018, pp. 4521–4529 (cit. on p. 46).

[ODo+14] PeterO’Donovan, JānisLībeks,AseemAgarwala, andAaronHertzmann. “Exploratory
font selection using crowdsourced attributes”. In: ACM Transactions on Graphics
33.4 (2014), p. 92 (cit. on p. 46).

[Ols+09] LukeOlsen, FaramarzF. Samavati,MarioCosta Sousa, and JoaquimA. Jorge. “Sketch-
based modeling: A survey”. In: Computers & Graphics 33.1 (2009), pp. 85–103 (cit.
on p. 47).

129

[OSG08] Maks Ovsjanikov, Jian Sun, and Leonidas Guibas. “Global intrinsic symmetries of
shapes”. In: Computer Graphics Forum. Vol. 27. 2008, pp. 1341–1348 (cit. on p. 18).

[Ovs+10] MaksOvsjanikov,QuentinMérigot, FacundoMémoli, andLeonidasGuibas. “One
point isometric matching with the heat kernel”. In: Computer Graphics Forum.
Vol. 29. 2010, pp. 1555–1564 (cit. on p. 18).

[Ovs+11] Maks Ovsjanikov, Wilmot Li, Leonidas Guibas, and Niloy J Mitra. “Exploration
of continuous variability in collections of 3D shapes”. In: ACM Transactions on
Graphics 30.4 (2011), pp. 1–10 (cit. on p. 47).

[Ovs+12] MaksOvsjanikov,MirelaBen-Chen, Justin Solomon,AdrianButscher, andLeonidas
Guibas. “Functional maps: A flexible representation of maps between shapes”. In:
ACMTransactions on Graphics 31.4 (2012), pp. 1–11 (cit. on p. 18).

[Pan+12] HaoPan,Yi-KingChoi, YangLiu,WenchaoHu,QiangDu,KonradPolthier,Caim-
ing Zhang, andWenping Wang. “Robust Modeling of Constant Mean Curvature
Surfaces”. In: ACMTransactions on Graphics 31.4 (2012), pp. 1–11 (cit. on p. 79).

[Par+19] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven
Lovegrove. “DeepSDF:LearningContinuous SignedDistanceFunctions for Shape
Representation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 2019 (cit. on pp. 12, 46, 78, 80).

[PD84] Thomas Porter and Tom Duff. “Compositing. Digital Images”. In: Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive Techniques. 1984,
pp. 253–259 (cit. on p. 104).

[PFC15] Huy Quoc Phan, Hongbo Fu, and Antoni B Chan. “Flexyfont: Learning transfer-
ring rules for flexible typeface synthesis”. In: Computer Graphics Forum. Vol. 34.
Wiley Online Library, 2015, pp. 245–256 (cit. on p. 46).

[PO18] Adrien Poulenard and Maks Ovsjanikov. “Multi-directional geodesic neural net-
works via equivariant convolution”. In:ACMTransactions on Graphics 37.6 (2018),
pp. 1–14 (cit. on p. 21).

[Pop96] EV Popov. “On some variational formulations for minimum surface”. In:Transac-
tions of the Canadian Society forMechanical Engineering 20.4 (1996), pp. 391–400
(cit. on p. 79).

[PP93] Ulrich Pinkall and Konrad Polthier. “Computing Discrete Minimal Surfaces and
Their Conjugates”. In: Experimental Mathematics 2.1 (1993), pp. 15–36 (cit. on
p. 79).

[PP97] Harold R Parks and Jon T Pitts. “Computing Least Area Hypersurfaces Spanning
ArbitraryBoundaries”. In:SIAMJournal onScientificComputing 18.3 (1997), pp. 886–
917 (cit. on p. 80).

[PUG19] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas Geiger. “Superquadrics
Revisited:Learning 3DShapeParsingbeyondCuboids”. In:Proceedings of the IEEE/CVF
Conference onComputerVisionandPatternRecognition (CVPR). 2019 (cit. onpp. 46,
54, 80).

130

[Qia+20] Yi-Ling Qiao, Lin Gao, Paul Rosin, Yu-Kun Lai, Xilin Chen, et al. “Learning on
3D meshes with Laplacian encoding and pooling”. In: IEEE Transactions on Visu-
alization and Computer Graphics (2020) (cit. on p. 22).

[QMK06] ZhengQin,MichaelDMcCool, andCraig SKaplan. “Real-TimeTexture-Mapped
Vector Glyphs”. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games. ACM, 2006, pp. 125–132 (cit. on p. 52).

[Rad+21] AlecRadford, JongWookKim,ChrisHallacy, AdityaRamesh,Gabriel Goh, Sand-
hiniAgarwal,Girish Sastry,AmandaAskell, PamelaMishkin, JackClark, et al. “Learn-
ing transferable visual models from natural language supervision”. In: Proceedings
of the 38th International Conference on Machine Learning. 2021, pp. 8748–8763
(cit. on p. 113).

[Rav+10] DanRaviv,Michael Bronstein, Alexander Bronstein, andRonKimmel. “Volumet-
ric heat kernel signatures”. In: Proceedings of the ACMWorkshop on 3D Object Re-
trieval. 2010, pp. 39–44 (cit. on pp. 18, 19).

[Rav+11] DanRaviv,MichaelBronstein,AlexanderBronstein,RonKimmel, andNir Sochen.
“Affine-invariant diffusion geometry for the analysis of deformable 3D shapes”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2011, pp. 2361–2367 (cit. on p. 19).

[Red+16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You only look
once: Unified, real-time object detection”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2016, pp. 779–788
(cit. on p. 101).

[Red+20] Pradyumna Reddy, Paul Guerrero, Matt Fisher, Wilmot Li, and Niloy J. Mitra.
“DiscoveringPatternStructureUsingDifferentiableCompositing”. In:ACMTrans-
actions on Graphics 39.6 (2020), 262:1–262:15 (cit. on p. 98).

[Rez+16] Danilo Jimenez Rezende, SM Ali Eslami, Shakir Mohamed, Peter Battaglia, Max
Jaderberg, and Nicolas Heess. “Unsupervised learning of 3D structure from im-
ages”. In: Advances in neural information processing systems. 2016, pp. 4996–5004
(cit. on p. 12).

[Rus07] RaifRustamov. “Laplace-Beltrami eigenfunctions for deformation invariant shape
representation”. In: Symposium on Geometry Processing. 2007, pp. 225–233 (cit. on
p. 18).

[RWP06] Martin Reuter, Franz-ErichWolter, and Niklas Peinecke. “Laplace–Beltrami spec-
tra as ‘shape-DNA’ of surfaces and solids”. In:Computer-AidedDesign 38.4 (2006),
pp. 342–366 (cit. on p. 18).

[SBR16] Ayan Sinha, Jing Bai, and Karthik Ramani. “Deep Learning 3D Shape Surfaces Us-
ing Geometry Images”. In: Proceedings of the European Conference on Computer
Vision (ECCV). 2016 (cit. on p. 21).

[SBS21] Dmitriy Smirnov, Mikhail Bessmeltsev, and Justin Solomon. “Learning Manifold
Patch-Based Representations of Man-Made Shapes”. In: International Conference
on Learning Representations (ICLR). 2021 (cit. on p. 42).

131

[SCA20] Othman Sbai, Camille Couprie, and Mathieu Aubry. “Unsupervised Image De-
composition in Vector Layers”. In: IEEE International Conference on Image Pro-
cessing. IEEE, 2020 (cit. on p. 97).

[Sch+17] Adriana Schulz, Ariel Shamir, Ilya Baran, David IWLevin, Pitchaya Sitthi-Amorn,
and Wojciech Matusik. “Retrieval on Parametric Shape Collections”. In: ACM
Transactions on Graphics 36.1 (2017), p. 11 (cit. on p. 47).

[Sch+20] Jonas Schult, FrancisEngelmann,TheodoraKontogianni, andBastianLeibe. “DualConvMesh-
Net: Joint Geodesic and Euclidean Convolutions on 3DMeshes”. In: Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2020, pp. 8612–8622 (cit. on p. 21).

[SDL18] Stefan Schonsheck, Bin Dong, and Rongjie Lai. “Parallel Transport Convolution:
ANewTool forConvolutionalNeuralNetworksonManifolds”. In:arXiv:1805.07857
(2018) (cit. on p. 21).

[Sei+06] StevenMSeitz, BrianCurless, JamesDiebel,Daniel Scharstein, andRichardSzeliski.
“AComparison andEvaluation ofMulti-View StereoReconstructionAlgorithms”.
In:Proceedings of the IEEE/CVFConference onComputerVision andPatternRecog-
nition (CVPR). 2006 (cit. on p. 45).

[SG18] David Stutz and Andreas Geiger. “Learning 3D Shape Completion under Weak
Supervision”. In: International Journal of Computer Vision (2018), pp. 1–20 (cit.
on p. 46).

[Sha+20] Gopal Sharma,DifanLiu, SubhransuMaji, EvangelosKalogerakis, SiddharthaChaud-
huri, and Radomír Měch. “ParSeNet: A parametric surface fitting network for 3D
point clouds”. In:Proceedings of theEuropeanConference onComputerVision (ECCV).
Springer, 2020, pp. 261–276 (cit. on p. 80).

[Sha+22] Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. “Diffu-
sionNet: DiscretizationAgnostic Learning on Surfaces”. In:ACMTransactions on
Graphics (2022) (cit. on pp. 12, 22).

[She+12] Chao-Hui Shen, Hongbo Fu, Kang Chen, and Shi-Min Hu. “Structure recovery
by part assembly”. In: ACM Transactions on Graphics 31.6 (2012), p. 180 (cit. on
p. 47).

[Shi+15] Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. “Deep Panoramic Rep-
resentation for 3-D Shape Recognition”. In: IEEE Signal Processing Letters 22.12
(2015), pp. 2339–2343 (cit. on p. 22).

[SI10] Rapee Suveeranont and Takeo Igarashi. “Example-based automatic font genera-
tion”. In: International Symposium on Smart Graphics. Springer, 2010, pp. 127–
138 (cit. on p. 46).

[SII18] Edgar Simo-Serra, Satoshi Iizuka, andHiroshi Ishikawa. “Mastering Sketching:Ad-
versarialAugmentation for StructuredPrediction”. In:ACMTransactions onGraph-
ics 37.1 (2018) (cit. on p. 68).

[Sim14] Leon Simon. “Introduction to geometric measure theory”. In: Tsinghua Lectures
(2014) (cit. on pp. 81, 84).

132

[Sla+17] Miroslava Slavcheva,MaximilianBaust,DanielCremers, andSlobodan Ilic. “Killing-
Fusion: Non-rigid 3D reconstruction without correspondences”. In: Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2017, pp. 1386–1395 (cit. on p. 19).

[Smi+20] Dmitriy Smirnov, Matthew Fisher, Vladimir G. Kim, Richard Zhang, and Justin
Solomon. “Deep Parametric Shape Predictions using Distance Fields”. In: Proceed-
ings of the IEEE/CVFConference onComputerVisionandPatternRecognition (CVPR).
2020 (cit. on pp. 42, 56, 98).

[Smi+21] Dmitriy Smirnov,MichaëlGharbi,MatthewFisher,VitorGuizilini,AlexeiA.Efros,
and Justin Solomon. “MarioNette: Self-Supervised Sprite Learning”. In:Advances
in Neural Information Processing Systems. 2021 (cit. on p. 96).

[Smi+22] Dmitriy Smirnov*,DavidPalmer*, StephanieWang,AlbertChern, and Justin Solomon.
“DeepCurrents: Learning Implicit Representations of Shapes with Boundaries”.
In:Proceedings of the IEEE/CVFConference onComputerVision andPatternRecog-
nition (CVPR). 2022 (cit. on p. 77).

[SO20a] Abhishek Sharma andMaks Ovsjanikov. “Weakly supervised deep functional map
for shape matching”. In:Advances in Neural Information Processing Systems. 2020
(cit. on p. 22).

[SO20b] Nicholas Sharp andMaksOvsjanikov. “PointTriNet: Learned Triangulation of 3D
Point Sets”. In:Proceedings of theEuropeanConference onComputerVision (ECCV).
2020 (cit. on p. 20).

[SOG09] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. “A Concise and Provably In-
formativeMulti-Scale Signature Based onHeat Diffusion”. In:Computer Graphics
Forum. Vol. 28. 2009, pp. 1383–1392 (cit. on pp. 18, 35).

[Sol+11a] Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. “As-
Killing-As-Possible Vector Fields for Planar Deformation”. In: Computer Graphics
Forum. Vol. 30. 2011, pp. 1543–1552 (cit. on pp. 19, 27).

[Sol+11b] Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. “Dis-
covery of Intrinsic Primitives on Triangle Meshes”. In: Computer Graphics Forum.
Vol. 30. 2011, pp. 365–374 (cit. on p. 19).

[Son+20] AnPing Song, Xin YiDi, XiaoKangXu, and ZiHeng Song. “MeshGraphNet: An
effective 3D polygon mesh recognition With topology reconstruction”. In: IEEE
Access 8 (2020), pp. 205181–205189 (cit. on p. 21).

[Spa+12] M. Spagnuolo,M. Bronstein, A. Bronstein, and A. Ferreira. “Affine-Invariant Pho-
tometricHeat Kernel Signatures”. In:Eurographics (2012), pp. 39–46 (cit. on p. 19).

[SS21] Dmitriy Smirnov and Justin Solomon. “HodgeNet: Learning Spectral Geometry
onTriangleMeshes”. In:ACMTransactions on Graphics (TOG) 40.4 (2021), 166:1–
166:11 (cit. on p. 15).

[SSC19] Nicholas Sharp, Yousuf Soliman, and Keenan Crane. “The vector heat method”.
In: ACMTransactions on Graphics 38.3 (2019), pp. 1–19 (cit. on p. 19).

133

[STP17] Konstantinos Sfikas, Theoharis Theoharis, and Ioannis Pratikakis. “Exploiting the
PANORAMA representation for convolutional neural network classification and
retrieval”. In: Proceedings of theWorkshop on 3D Object Retrieval. Vol. 6. 2017, p. 7
(cit. on p. 22).

[Su+15] HangSu, SubhransuMaji, EvangelosKalogerakis, andErikLearned-Miller. “Multi-
view convolutional neural networks for 3D shape recognition”. In: Proceedings of
the IEEE/CVF InternationalConference onComputerVision (ICCV). 2015, pp. 945–
953 (cit. on pp. 22, 45).

[Sul90] John M Sullivan. “A Crystalline Approximation Theorem for Hypersurfaces”. In:
Ann Arbor, Thesis (Ph.D.), Princeton University (1990) (cit. on p. 80).

[Sum+18] AdamSummerville, SamSnodgrass,MatthewGuzdial,ChristofferHolmgård,Amy
KHoover,Aaron Isaksen,AndyNealen, and JulianTogelius. “ProceduralContent
Generation via Machine Learning (PCGML)”. In: IEEE Transactions on Games
10.3 (2018), pp. 257–270 (cit. on p. 99).

[Sun+19] Chunyu Sun, Qianfang Zou, Xin Tong, and Yang Liu. “Learning Adaptive Hier-
archical Cuboid Abstractions of 3D Shape Collections”. In:ACMTransactions on
Graphics 38.6 (2019) (cit. on pp. 46, 56).

[Sun+20] Zhiyu Sun, Ethan Rooke, Jerome Charton, Yusen He, Jia Lu, and Stephen Baek.
“ZerNet:Convolutional neural networks on arbitrary surfaces via Zernike local tan-
gent space estimation”. In: Computer Graphics Forum. 2020 (cit. on pp. 20, 21).

[SW12] Amit Singer andH.-T.Wu. “Vector diffusionmaps and the connection Laplacian”.
In: Communications on Pure and AppliedMathematics 65.8 (2012), pp. 1067–1144
(cit. on pp. 19, 35).

[SW19] Henrik Schumacher andMaxWardetzky. “Variational convergence of discretemin-
imal surfaces”. In:NumerischeMathematik 141.1 (2019), pp. 173–213 (cit. on p. 79).

[Tak+21] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek
Nowrouzezahrai, Alec Jacobson, MorganMcGuire, and Sanja Fidler. “Neural Ge-
ometric Level of Detail: Real-time Rendering with Implicit 3D Shapes”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2021 (cit. on pp. 12, 80).

[Tan+20] MatthewTancik, Pratul P. Srinivasan, BenMildenhall, Sara Fridovich-Keil, Nithin
Raghavan,Utkarsh Singhal, Ravi Ramamoorthi, JonathanT. Barron, andRenNg.
“Fourier Features Let Networks Learn High Frequency Functions in Low Dimen-
sionalDomains”. In:Advances inNeural Information Processing Systems. 2020 (cit.
on p. 89).

[Tat+18] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. “Tangent
convolutions for dense prediction in 3D”. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 3887–3896
(cit. on p. 20).

134

[TEM18] ShubhamTulsiani, Alexei A Efros, and JitendraMalik. “Multi-view consistency as
supervisory signal for learning shape and pose prediction”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018,
pp. 2897–2905 (cit. on p. 12).

[Tul+17] ShubhamTulsiani, Hao Su, Leonidas J Guibas, Alexei A Efros, and JitendraMalik.
“Learning shape abstractions by assembling volumetric primitives”. In:Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
Vol. 2. 2017 (cit. on pp. 43, 44, 48, 56, 66, 67, 80).

[TZN19] Justus Thies,Michael Zollhöfer, andMatthiasNießner. “DeferredNeural Render-
ing: Image Synthesis using Neural Textures”. In: ACM Transactions on Graphics
38.4 (2019), pp. 1–12 (cit. on p. 98).

[UIM12] Nobuyuki Umetani, Takeo Igarashi, and Niloy J Mitra. “Guided exploration of
physically valid shapes for furniture design.” In: ACM Transactions on Graphics
31.4 (2012), pp. 86–1 (cit. on p. 47).

[USB16] PaulUpchurch,Noah Snavely, andKavita Bala. “FromA toZ: SupervisedTransfer
of Style andContentUsingDeepNeuralNetworkGenerators”. In:arXiv:1603.02003
(2016) (cit. on p. 46).

[UVL18] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Deep Image Prior”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). 2018, pp. 9446–9454 (cit. on p. 98).

[VBV18] NitikaVerma,EdmondBoyer, and JakobVerbeek. “FeastNet: Feature-steered graph
convolutions for 3D shape analysis”. In: Proceedings of the IEEE/CVF Conference
onComputer Vision and PatternRecognition (CVPR). 2018, pp. 2598–2606 (cit. on
p. 20).

[Ven+21] RahulVenkatesh,TejanKarmali, Sarthak Sharma,AurobrataGhosh,R.Venkatesh
Babu, Laszlo A. Jeni, andManeesh Singh. “Deep Implicit Surface Point Prediction
Networks”. In:Proceedings of the IEEE/CVFInternationalConference onComputer
Vision (ICCV). 2021, pp. 12653–12662 (cit. on pp. 13, 92).

[VG05] Marc Vaillant and Joan Glaunes. “Surface matching via currents”. In: Biennial In-
ternational Conference on Information Processing in Medical Imaging. Springer,
2005, pp. 381–392 (cit. on p. 80).

[Vis+19] JoostVisser,AlessandroCorbetta,VladoMenkovski, andFedericoToschi. “Stamp-
Net: unsupervised multi-class object discovery”. In: 2019 IEEE International Con-
ference on Image Processing (ICIP). IEEE, 2019, pp. 2951–2955 (cit. on p. 98).

[Vla+08] DanielVlasic, IlyaBaran,WojciechMatusik, and JovanPopović. “ArticulatedMesh
Animation fromMulti-view Silhouettes”. In: ACMTransactions on Graphics 27.3
(2008) (cit. on pp. 15, 38, 40).

[WA94] J. Y. A. Wang and E. H. Adelson. “Representing Moving Images with Layers”. In:
IEEE Transactions on Image Processing 3.5 (1994), pp. 625–638 (cit. on p. 97).

[Wag77] H-JWagner. “A contribution to the numerical approximationofminimal surfaces”.
In: Computing 19.1 (1977), pp. 35–58 (cit. on p. 79).

135

[Wan+12] Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-Or,
andBaoquanChen. “ActiveCo-Analysis of a Set of Shapes”. In:ACMTransactions
on Graphics 31.6 (2012), pp. 1–10 (cit. on p. 37).

[Wan+14] Hao Wang, Tong Lu, Oscar Kin-Chung Au, and Chiew-Lan Tai. “Spectral 3D
mesh segmentation with a novel single segmentation field”. In: Graphical Models
76.5 (2014), pp. 440–456 (cit. on p. 18).

[Wan+18a] Lingjing Wang, Jifei Wang, Cheng Qian, and Yi Fang. “Unsupervised learning of
3Dmodel reconstruction fromhand-drawn sketches”. In:ACMMM. ACMMM.
Association for ComputingMachinery, Inc, 2018, pp. 1820–1828 (cit. on p. 47).

[Wan+18b] NanyangWang, YindaZhang, ZhuwenLi, Yanwei Fu,Wei Liu, andYu-Gang Jiang.
“Pixel2Mesh: Generating 3DMeshModels from Single RGB Images”. In: Proceed-
ings of the European Conference on Computer Vision (ECCV). 2018 (cit. on pp. 12,
72, 73, 80).

[Wan+18c] Pengyu Wang, Yuan Gan, Panpan Shui, Fenggen Yu, Yan Zhang, Songle Chen,
and Zhengxing Sun. “3D Shape Segmentation via Shape Fully Convolutional Net-
works”. In: Computers & Graphics 70 (2018), pp. 128–139 (cit. on pp. 21, 44).

[Wan+18d] YuWang, Mirela Ben-Chen, Iosif Polterovich, and Justin Solomon. “Steklov spec-
tral geometry for extrinsic shape analysis”. In: ACM Transactions on Graphics 38.1
(2018), pp. 1–21 (cit. on pp. 18, 19).

[Wan+19] Yu Wang, Vladimir Kim, Michael Bronstein, and Justin Solomon. “Learning geo-
metric operators on meshes”. In: International Conference on Learning Represen-
tations (ICLR)Workshops. 2019 (cit. on pp. 22, 24).

[WC21] Stephanie Wang and Albert Chern. “Computing Minimal Surfaces with Differen-
tial Forms”. In:ACMTransactions on Graphics 40.4 (2021), pp. 1–14 (cit. on pp. 80,
84, 86, 90, 91).

[WEH20] RubenWiersma, Elmar Eisemann, andKlausHildebrandt. “CNNson Surfaces us-
ingRotation-Equivariant Features”. In:ACMTransactions onGraphics 39.4 (2020)
(cit. on pp. 12, 21).

[Wei+16] Lingyu Wei, Qixing Huang, Duygu Ceylan, Etienne Vouga, and Hao Li. “Dense
Human Body Correspondences Using Convolutional Networks”. In: Proceedings
of the IEEE/CVFConference on Computer Vision and Pattern Recognition (CVPR).
2016, pp. 1544–1553 (cit. on p. 22).

[WH18] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV). 2018, pp. 3–19 (cit. on p. 101).

[WH21] JianfengWang and Xiaolin Hu. “Convolutional Neural Networks with Gated Re-
current Connections”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021) (cit. on p. 10).

[Wil+19] Francis Williams, Teseo Schneider, Claudio Silva, Denis Zorin, Joan Bruna, and
Daniele Panozzo. “Deep Geometric Prior for Surface Reconstruction”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2019, pp. 10130–10139 (cit. on p. 12).

136

[Wil61] Walter L Wilson. “On discrete Dirichlet and Plateau problems”. In: Numerische
Mathematik 3.1 (1961), pp. 359–373 (cit. on p. 79).

[WP09] SteffenWeißmann andUlrich Pinkall. “Real-time Interactive Simulation of Smoke
Using Discrete Integrable Vortex Filaments”. In:Workshop in Virtual Reality In-
teractions and Physical Simulation ”VRIPHYS” (2009). Ed. by Hartmut Prautzsch,
AlfredSchmitt, JanBender, andMatthiasTeschner.TheEurographicsAssociation,
2009. isbn: 978-3-905673-73-9 (cit. on p. 85).

[WS19] Yu Wang and Justin Solomon. “Intrinsic and extrinsic operators for shape analy-
sis”. In:Handbook of Numerical Analysis. Vol. 20. Elsevier, 2019, pp. 41–115 (cit. on
p. 18).

[Wu+16] JiajunWu,TianfanXue, Joseph J Lim, YuandongTian, JoshuaBTenenbaum,An-
tonio Torralba, and William T Freeman. “Single Image 3D Interpreter Network”.
In: Proceedings of the European Conference on Computer Vision (ECCV). 2016 (cit.
on p. 12).

[Wu+17] Jiajun Wu, Yifan Wang, Tianfan Xue, Xingyuan Sun, William T Freeman, and
Joshua BTenenbaum. “MarrNet: 3D ShapeReconstruction via 2.5D Sketches”. In:
Advances In Neural Information Processing Systems. 2017 (cit. on p. 12).

[Wu+18] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong Zhang, William T Free-
man, and Joshua B Tenenbaum. “Learning 3D shape priors for shape completion
and reconstruction”. In: Proceedings of the European Conference on Computer Vi-
sion (ECCV). Vol. 3. 2018 (cit. on pp. 12, 80).

[XDZ17] Haotian Xu, Ming Dong, and Zichun Zhong. “Directionally Convolutional Net-
works for 3D Shape Segmentation”. In:Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 2017, pp. 2698–2707 (cit. on p. 22).

[Yan+16] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and Honglak Lee. “Perspective
Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D
Supervision”. In:Advances InNeural InformationProcessing Systems. 2016, pp. 1696–
1704 (cit. on p. 12).

[Yan+18] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. “FoldingNet: Point Cloud
Auto-Encoder via DeepGridDeformation”. In: Proceedings of the IEEE/CVFCon-
ference on Computer Vision and Pattern Recognition (CVPR). 2018 (cit. on p. 12).

[Yan+19] GuandaoYang,XunHuang,ZekunHao,Ming-YuLiu, SergeBelongie, andBharath
Hariharan. “PointFlow: 3D Point Cloud Generation with Continuous Normaliz-
ing Flows”. In:Proceedings of the IEEE/CVF International Conference onComputer
Vision (ICCV). 2019, pp. 4541–4550 (cit. on p. 80).

[Yan+20] Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu, and Xin Tong. “PFCNN: Convolu-
tional Neural Networks on 3D Surfaces Using Parallel Frames”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2020, pp. 13578–13587 (cit. on p. 21).

137

[Yan+21] Guandao Yang, Serge Belongie, Bharath Hariharan, and Vladlen Koltun. “Geome-
try Processing with Neural Fields”. In:Advances in Neural Information Processing
Systems. 2021 (cit. on pp. 13, 80).

[Ye+18] Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Hoffmann.
“A unified discrete framework for intrinsic and extrinsic Dirac operators for geom-
etry processing”. In: Computer Graphics Forum. Vol. 37. 2018, pp. 93–106 (cit. on
p. 18).

[Yi+16] LiYi,VladimirG.Kim,DuyguCeylan, I.-ChaoShen,MengyanYan,HaoSu,Cewu
Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. “A Scalable Active Frame-
work for Region Annotation in 3D Shape Collections”. In: ACMTransactions on
Graphics 35.6 (2016), pp. 1–12 (cit. on p. 70).

[Yi+17] Li Yi, Hao Su, Xingwen Guo, and Leonidas Guibas. “SpecSyncCNN: Synchro-
nized spectral CNN for 3D shape segmentation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2282–
2290 (cit. on p. 22).

[Yin+18] Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. “P2P-NET: Bidi-
rectional Point Displacement Net for Shape Transform”. In: ACM Transactions
on Graphics 37.4 (2018), 152:1–152:13 (cit. on pp. 12, 80).

[Yu+20] Changqian Yu, JingboWang,ChangxinGao,Gang Yu,Chunhua Shen, andNong
Sang. “Context Prior for Scene Segmentation”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 2020 (cit. on
p. 10).

[Zen+12] Wei Zeng, Ren Guo, Feng Luo, and Xianfeng Gu. “Discrete Heat Kernel Deter-
mines Discrete Riemannian Metric”. In: Graphical Models 74.4 (2012), pp. 121–
129 (cit. on p. 19).

[Zha+18] XiumingZhang,ZhoutongZhang,ChengkaiZhang, JoshuaBTenenbaum,William
TFreeman, and JiajunWu. “Learning toReconstruct ShapesFromUnseenClasses”.
In: Advances in Neural Information Processing Systems. 2018 (cit. on pp. 12, 80).

[Zha+20] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin,
Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li, and Alexander Smola.
“ResNeSt: Split-Attention Networks”. In: arXiv:2004.08955 (2020) (cit. on p. 10).

[Zhu+17] Jun-YanZhu,RichardZhang,DeepakPathak,TrevorDarrell,AlexeiAEfros,Oliver
Wang, and Eli Shechtman. “TowardMultimodal Image-to-Image Translation”. In:
Advances inNeural InformationProcessing Systems. 2017, pp. 465–476 (cit. onp. 53).

138

