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Abstract—Phylogenetic tree reconciliation is an important
technique for reconstructing the evolutionary histories of
species and genes and other dependent entities. Reconcil-
iation is typically performed in a maximum parsimony
framework and the number of optimal reconciliations can
grow exponentially with the size of the trees, making
it difficult to understand the solution space. This paper
demonstrates how a small number of reconciliations can be
found that collectively contain the most highly supported
events in the solution space. While we show that the
formal problem is NP-complete, we give a 1 � 1

e approx-
imation algorithm, experimental results that indicate its
effectiveness, and the new DTL-RnB software tool that
uses our algorithms to summarize the space of optimal
reconciliations (www.cs.hmc.edu/dtlrnb).

I. INTRODUCTION

Phylogenetic tree reconciliation is a fundamental tech-
nique for studying the evolution of pairs of entities
such as gene families and species, parasites and their
hosts, and species and their geographical habitats. The
reconciliation problem takes as input two trees and
the associations between their leaves and seeks to find
a mapping between the trees that accounts for their
incongruence. In the widely-used DTL model, four types
of events are considered: speciation, duplication, trans-
fer, and loss [1, 2, 4, 5, 6, 7, 19]. Henceforth, we
denote the two trees as the species tree (S) and the
gene tree (G), although these trees could be host and
species trees or area cladograms and species trees in the
contexts of cophylogenetic and biogeographical studies,
respectively.

Reconciliation in the DTL model is typically performed
using a maximum parsimony formulation where each
event type has an assigned cost and the objective is to
find a reconciliation of minimum total cost. Figure 1(a)
shows a small example of a species and gene tree and
their leaf associations. Figures 1(b) and (c) show two
different reconciliations of these trees with labels on
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Fig. 1: (a) A species tree in black and a gene tree in
gray with the leaf mapping shown with dotted lines. Two
different reconciliations that are optimal for different
event costs are shown in (b) and (c).

the events. Speciation is generally considered a “null
event” and given cost 0 while the other event types are
given positive costs. For example if duplication, transfer,
and loss each have cost 1, then the reconciliation in
Figure 1(b) is optimal and incurs one speciation and one
transfer, with total cost of 1. However, if duplication and
loss have cost 1 and transfer has cost greater than 4, then
the reconciliation in Figure 1(c) is optimal, incurring
one speciation, one duplication, and three losses, with
total cost of 4. Henceforth, we use the terms optimal
and maximum parsimony interchangeably.

A species tree is said to be dated if the relative times of
its internal nodes are known. For dated species trees,
maximum parsimony reconciliations can be found in
polynomial time [7, 10, 20]. However, accurately dating
species trees is generally difficult [15], and estimated
dates may be unreliable. Thus, much of the literature
on DTL reconciliation assumes that the species tree is
undated.
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Fig. 2: A fragment of a temporally infeasible reconcil-
iation for a species tree (black) and gene tree (gray).
Node x transfers one child to the species edge from a to
b, implying that x must occur before b and thus that c
occurs before b. Node y transfers one child to the species
edge from a to c, meaning that y must occur before c and
thus that b occurs before c, contradicting the constraint
that c occurs before b.

For the undated case, maximum parsimony reconcilia-
tions can be found in polynomial time [1, 18, 20] but
these reconciliations may, in some cases, be temporally
infeasible in the sense that there exists no ordering of the
internal nodes that is consistent with the reconciliation.
An example of a temporally infeasible reconciliation is
illustrated in Figure 2. Temporal infeasibility can be de-
tected in polynomial time [18] but the problem of finding
temporally feasible maximum parsimony reconciliations
is NP-complete [13, 19].

In general, the number of maximum parsimony recon-
ciliations can grow exponentially with the size of the
species and gene trees [17]. For example, Bansal et al. [2]
examined a species tree with 100 primarily prokaryotic
leaves and a corpus of over 4700 gene trees with median
and average leaf-set sizes of 18 and 35.1, respectively.1
Even for these relatively small trees, more than half of
the cases had over 100 optimal reconciliations, 15% had
over 10, 000 optimal reconciliations, and some had over
10

14 optimal reconciliations.

Consequently, a number of efforts have been made to
identify highly supported events and summarize the
space of maximum parsimony reconciliations. For dated
trees, Scornavacca et al. [16] defined a compact repre-
sentation of the space of all maximum parsimony rec-

1Duplication, transfer, and loss costs were set to 2, 3, and 1,
respectively.

onciliations called reconciliation graphs. Nguyen et al.
[12] showed how reconciliation graphs can be used
to efficiently compute a single “median reconcilation”
that represents the entire space of maximum parsimony
reconciliations. For undated trees, Bansal et al. [2]
showed how the space of optimal reconciliations can
be efficiently sampled uniformly to select representative
reconciliations and identify frequently recurring events.
Libeskind-Hadas et al. [11] used the notion of Pareto-
optimal reconciliations to identify individual events that
are highly supported across a range of different event
costs in undated trees.

While these recent efforts have contributed to a better
understanding of the very large space of maximum
parsimony reconciliations, they provide only a partial
view of this space. Reconciliation graphs have important
theoretical properties but do not provide an intuitive
understanding of the space of reconciliations. A median
reconciliation is a useful summary as a single reconcili-
ation, but any single reconciliation may exclude many
highly-supported events. Moreover, these results have
been restricted to dated trees. For undated trees, the
sampling methods may, inherently, miss some recon-
ciliations containing highly-supported events while the
Pareto-optimal approach only identifies highly-supported
individual events and not whole reconciliations.

In contrast, we address the problem of finding a relatively
small number of maximum parsimony reconciliations
that best represent the most highly-supported events
found in the space of all maximum parsimony recon-
ciliations in undated trees. Specifically, given a function
that computes a “support” score for each event found in
the space of maximum parsimony reconciliations and a
user-specified parameter k, we wish to find k maximum
parsimony reconciliations that maximize the sum of
these scores.

Our contributions in this paper are the following:

1) We formally define the k-Reconciliations Cover
Problem (kRCP) of finding a set of k reconciliations
that best cover the maximum parsimony reconcili-
ations for undated trees.

2) While we show that kRCP is NP-complete, we
give a practical polynomial time approximation
algorithm with approximation ratio 1� 1

e

.
3) We provide experimental results on a diverse dataset

of 4848 genes from the Tree of Life [6]. These
results show that surprisingly few reconciliations
are needed to cover the events even in large solution
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spaces. In this dataset, k  15 reconciliations
sufficed to cover all of the events in over 98%

of the instances even though more than 15% of
the instances had between 10

4 and 10

39 maximum
parsimony reconciliations.

4) We have implemented this algorithm in the publicly
available DTL-RnB (DTL Reconciliation Browser)
web-based tool that allows researchers to upload
their own datasets and browse the reconciliations
that approximate the best coverage of the large
space of optimal solutions.

II. PRELIMINARIES

For reconciliations, we follow the definitions and nota-
tion from Bansal [1]. Given a rooted tree T , we denote
its node, edge, and leaf sets by V (T ), E(T ), and Le(T ),
respectively. The set of internal nodes is denoted I(T ),
the root node of T is denoted by rt(T ), the parent of a
node v 2 V (T ) by pa

T

(v), its set of children by Ch
T

(v),
and the (maximal) subtree of T rooted at v by T (v). We
define 

T

to be the partial order on V (T ) where x 
T

y
if y is a node on the path between rt(T ) and x. The
partial order �

T

is defined analogously, i.e., x �
T

y if
x is a node on the path between rt(T ) and y. We say that
x and y are incomparable if neither x 

T

y nor y 
T

x.
Given two nodes x, y 2 V (T ), we denote by lca

T

(x, y)
the least common ancestor (LCA) of x and y in tree T ;
that is, lca

T

(x, y) is the unique smallest upper bound of
x and y under 

T

. Given x, y 2 V (G), x !
T

y denotes
the unique path from x to y in G. We denote by d

T

(x, y)
the number of edges on the path x !

T

y.

We assume that the two input trees are denoted by G
(e.g., gene tree) and S (e.g., species tree), where the goal
is to map tree G to tree S. Each leaf of tree G is labeled
with the leaf-label from S with which it is associated.
This labeling defines a leaf-mapping L : Le(G) ! Le(S)
that maps a leaf node g 2 Le(G) to that unique leaf node
s 2 Le(S) which has the same label as g. Note that tree
G may have more than one leaf associated with the same
leaf of S. Throughout this work we assume that L(g) is
well-defined for each g 2 Le(G).

A. Reconciliation and DTL-scenarios

Next, we define a Duplication-Transfer-Loss scenario
(DTL-scenario) [1, 19] for G and S that formally
characterizes a mapping of G into S that corresponds
to a biologically valid reconciliation. A DTL-scenario

extends the leaf-mapping to map every node of G to a
unique node in S in a way that respects the immediate
temporal constraints implied by the topology of S, and
designates each internal node of G as representing either
a speciation, duplication, or transfer event.

The following three definitions in this subsection are
from [1].

Definition II.1 (DTL-scenario). A DTL-scenario for G
and S is a seven-tuple (L,M,⌃,�,⇥,⌅, ⌧), where
L : Le(G) ! Le(S) represents the leaf-mapping from
G to S, M : V (G) ! V (S) maps each node of G to
a node of S, the sets ⌃, �, and ⇥ partition I(G) into
speciation, duplication, and transfer nodes respectively,
⌅ is a subset of edges of G that represent transfer edges,
and ⌧ : ⇥ ! V (S) specifies the recipient (or “landing
site”) for each transfer event, subject to the following
constraints:

1) If g 2 Le(G), then M(g) = L(g).

2) If g 2 I(G) and g0 and g00 denote the children of
g, then,

a) M(g) 6
S

M(g0) and M(g) 6
S

M(g00),

b) At least one of M(g0) and M(g00) is a descen-
dant of M(g).

3) Given any edge (g, g0) 2 E(G), (g, g0) 2 ⌅ if and
only if M(g) and M(g0) are incomparable.

4) If g 2 I(G) and g0 and g00 denote the children of
g, then,

a) g 2 ⌃ only if M(g) = lca
S

(M(g0),M(g00)) and
M(g0) and M(g00) are incomparable,

b) g 2 � only if M(g) �
S

lca
S

(M(g0),M(g00)),

c) g 2 ⇥ if and only if either (g, g0) 2 ⌅ or
(g, g00) 2 ⌅.

d) If g 2 ⇥ and (g, g0) 2 ⌅, then M(g) and ⌧(g)
must be incomparable, and M(g0) must be a
descendant of ⌧(g), i.e., M(g0) 

S

⌧(g).

Constraint 1 ensures that the mapping M is consistent
with the leaf-mapping L. Constraint 2a imposes on M
the temporal constraints implied by S. Constraint 2b
implies that any internal node in G may represent at most
one transfer event. Constraint 3 determines the edges
of G that are transfer edges. Constraints 4a, 4b, and
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4c state the conditions under which an internal node of
G may represent a speciation, duplication, and transfer,
respectively. Constraint 4d specifies which species may
be designated as the recipient species for any given
transfer event.

DTL-scenarios correspond naturally to reconciliations,
and it is straightforward to infer the reconciliation of G
and S implied by any DTL-scenario. However, as noted
earlier, the resulting reconciliation is not guaranteed to
be temporally feasible.

Given a DTL-scenario, one can directly count the min-
imum number of gene losses [1] in the corresponding
reconciliation as follows.

Definition II.2 (Losses). Given a DTL-scenario ↵ =

(L,M,⌃,�,⇥,⌅, ⌧) for G and S, let g 2 V (G) and
{g0, g00} = Ch

G

(g). The number of losses Loss
↵

(g) at
node g, is defined to be:

• (d
S

(M(g),M(g0))�1)+(d
S

(M(g),M(g00))�1),
if g 2 ⌃,

• d
S

(M(g),M(g0)) + d
S

(M(g),M(g00)), if g 2 �,
and

• d
S

(M(g),M(g00)) + d
S

(⌧(g),M(g0)) if (g, g0) 2
⌅.

The total number of losses in the reconciliation cor-
responding to the DTL-scenario ↵ is defined to be
Loss

↵

=

P
g2I(G) Loss

↵

(g).

We assume that speciations have zero cost and let C�,
C⇥, and C⇤ denote the assigned positive costs for
duplication, transfer, and loss events, respectively. The
cost of reconciling G and S according to a DTL-scenario
↵ is defined as follows:

Definition II.3 (Reconciliation cost of a DTL-scenario).
Given a DTL-scenario ↵ = (L,M,⌃,�,⇥,⌅, ⌧) for G
and S, the reconciliation cost associated with ↵ is given
by C� · |�|+ C⇥ · |⇥|+ C⇤ · Loss

↵

.

B. Maximum Parsimony Reconciliations

An instance of the maximum parsimony reconciliation
problem comprises a gene tree G, a species tree S, a
leaf mapping L : Le(G) ! Le(S), and positive costs
C�, C⇥, and C⇤ for duplication, transfer, and loss
events, respectively. A maximum parsimony reconcili-
ation, henceforth denoted MPR, is a DTL-reconciliation

of minimum total cost with respect to the given set of
event costs.

A number of closely-related dynamic programming al-
gorithms have been given for finding MPRs in undated
trees [1, 19, 20]. Here, we use the U-MPR Algorithm
from Bansal et. al [1] which runs in time O(|G||S|).
This algorithm computes a table c(g, s) that gives the
cost of an optimal reconciliation for the subtree of G
rooted at g with the subtree of S rooted at s, including
reconciliations that involve duplications on and transfers
from the edge entering s. Thus, the cost of a MPR is
min

s2V (S) c(rt(G), s).

Standard dynamic programming “bookkeeping” methods
can be used to associate an annotation with each entry
c(g, s) comprising the set of events that are found in
all optimal solutions for the subproblem of mapping
g onto s. Recording these annotations in a list does
not effect the O(|G||S|) running time of the U-MPR
algorithm since the algorithm considers these events as
it computes the matrix c. Let {g0, g00} = Ch

G

(g) and
let {s0, s00} = Ch

S

(s), denoting the children of g and
s, respectively. Then, let c(g, s).events denote the set
of events associated with c(g, s) where each event is a
tuple of the following type:

• (S(g,s), {(g0, s0), (g00, s00)}) if the event is a speci-
ation in which g0 is associated with s0 and g00 is
associated with s00;

• (D(g,s), {(g0, s), (g00, s)}) if the event is a duplica-
tion;

• (T(g,s), {(g0, s), (g00, ŝ)}) if the event is a transfer
in which g0 remains on s and g00 transfers to ŝ (s
and ŝ are called the take-off and landing sites of
the transfer, respectively);

• (L(g,s), {(g, s0)}) if the event is a loss in which g
continues onto s0;

• (C(g,s),?) if the event is a leaf association (i.e., a
contemporary association) of (g, s), and L(g) = s.

For an event e, represented as a tuple as indicated
above, let e.type denote its first element, namely the
event type, and let e.associations denote its second
element, namely the set of associations. Note that if
e is a speciation, duplication, or transfer event, then
e.associations is a set containing two ordered pairs,
each representing an association between a gene tree
node and a species tree node. If e is a loss event, then
e.associations is a set containing one such ordered pair.
If e is a leaf association, then e.associations is the
empty set. We refer to the matrix c along with these
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event annotations as an annotated MPR matrix.

C. Undated Reconciliation Graphs

Scornavacca et. al [16] described a technique for com-
pactly representing the space of all MPRs for dated
species trees. We adapt this technique for undated trees.
The motivating principle is to encode the events and
associations stored in the annotated MPR matrix using a
directed graph. The graph contains a mapping node for
each (g, s) pair associating a gene g 2 V (G) to a species
s 2 V (S) that appears in some MPR and an event node
for each event in c(g, s).events. The representation is
compact by merit of the fact that while the mapping
(g, s) and its events may arise in many different MPRs,
they can be shared in this graph representation and
thus only need to appear there once. This structure
is analogous to the one first proposed in [16], but is
constructed using the annotated MPR matrix from the
dynamic program for undated trees rather than from the
dated ones used in the original formulation.

Definition II.4 (Undated Reconciliation Graph). Given
an instance of the maximum parsimony reconciliation
problem (G, S,L, C�, C⇥, C⇤) and an annotated max-
imum parsimony matrix c, we construct a directed un-
dated reconciliation graph G = (V

m

˙[V
e

, E) (where ˙[
represents disjoint union) with the following properties:
For each g 2 V (G) and s 2 V (S) such that g is
associated with s in some MPR:

1) There is a mapping node (g, s) 2 V
m

,

2) For each event e 2 c(g, s).events, there is an event
node e 2 V

e

and directed edge ((g, s), e).

3) For each event node e 2 V
e

, there is an edge to each
mapping node corresponding to an association in
e.associations.

A formal description of the algorithm for constructing
an undated reconciliation graph and a derivation of its
O(|G||S|2) running time are given in section A1 of the
appendix.

For a directed edge (u, v) in a directed acyclic graph
(DAG), we say that u is the parent of v and v is the child
of u. We say that a node with indegree 0 is a root of the
graph (there can be multiple roots) and that a node with
outdegree 0 is a leaf. For a DAG G, let rt(G) and Le(G)
denote the set of roots and leaves of G, respectively.

Given an undated reconciliation graph, we may associate
a non-negative real valued score with each event node
denoted � : V

e

! R�0. For example, relevant scoring
functions include uniform scoring (a score of 1 for each
event) and the frequency of the event over all MPRs. We
discuss these and other scoring functions in more detail
in Sections 4 and 5.

Next, we define undated reconciliation trees which cor-
respond to MPRs. (Undated reconciliation trees should
not be confused with the gene and species trees. Instead,
they are subgraphs of the undated reconciliation graph
that are topological trees.)

Definition II.5 (Undated Reconciliation Tree). Given an
undated reconciliation graph G = (V

m

˙[V
e

, E) for gene
tree G and species tree S, an undated reconciliation tree
is a subgraph of G constructed as follows:

1) The root of the tree is a root of G and thus, neces-
sarily, one of the form (rt(G), ·) corresponding to
the association of the root of G with some node in
S.

2) Each non-leaf mapping node added to the tree has
exactly one of its event node children added to the
tree.

3) Each event node added to the tree has all of its
mapping node children added to the tree.

There is a straightforward bijection between the set
of undated reconciliation trees and the set of MPRs.
This bijection is shown constructively via conversion
algorithms in Appendix A2.

In addition, we note that undated reconciliation trees are
acyclic, a result that will be needed in our algorithms in
the next section.

Lemma II.1. An undated reconciliation graph is acyclic.

Proof. Every path in an undated reconciliation graph
alternates between mapping nodes and event nodes. By
construction, two successive mapping nodes (g, s) and
(g0, s0) on such a path require that either g0 is a child
of g in G (in the case of speciation, duplication, and
transfer events) or that g = g0 and s0 is a child of s in
S (in the case of loss events). This relationship induces
a partial ordering on the mapping nodes and thus there
cannot exist a cycle in the graph.



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2537319, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

6

III. THE k-RECONCILIATIONS COVER PROBLEM

Since the number of MPRs can grow exponentially with
the sizes of the trees [17], our objective is to provide
a summary of the most representative reconciliations.
In this spirit, Nguyen et al. [12] gave an algorithm for
finding a single “median reconciliation” in a dated tree.
However, any single MPR may, inherently, exclude many
highly-supported events that are found in other MPRs.
Thus, we seek to provide a user-specified number of
MPRs that best cover the events in the potentially large
MPR solution space.

To that end, given a positive integer k of desired MPRs
and a scoring function associating a score (e.g., event
frequency) with each event, we seek to find k MPRs that
maximize the sum of the scores of the events that they
contain. We call this the k-Reconciliations Cover Prob-
lem (kRCP) and, for computational reasons, use undated
reconciliation trees as proxies for their corresponding
MPRs.

Definition III.1 (k-Reconciliations Cover Problem
(kRCP)). Given an undated reconciliation graph G =

(V
m

˙[V
e

, E) with scoring function � : V
e

! R�0 and
a positive integer k, find a set T = {T1, . . . , T

k

} of
k undated reconciliation trees in G that maximizes the
quantity

P
v2Ve(T ) �(v) where V

e

(T ) =

S
1ik

V
e

(T
i

).

A. NP-completeness Result

Next, we show that an abstraction of kRCP is NP-
complete. Specifically, we define graphs called R-graphs
and R-trees that capture the structure of undated rec-
onciliation graphs and reconciliation trees, respectively.
We then show that the analog of kRCP using R-graphs
and R-trees, in lieu of undated reconciliation graphs and
reconciliation trees, is NP-complete.

Recall that the roots of undated reconciliation graphs are
mapping nodes, the leaves are event nodes representing
leaf associations, each event node has indegree 1 and
outdegree either 0 (for leaf associations), 1 (for losses),
or 2 (for speciations, duplications, and transfer), and
every edge has one endpoint that is an event node and
the other that is a mapping node.

Definition III.2 (R-graph). An R-graph is a finite simple
directed acyclic graph G = (V

m

˙[V
e

, E) such that the
roots are in V

m

, the leaves are in V
e

, every node in V
e

has indegree 1 and outdegree 0, 1, or 2, and every edge
has one endpoint in V

m

and the other in V
e

.

Next, we define an R-tree corresponding to an undated
reconciliation tree.

Definition III.3 (R-tree). An R-tree T with respect to an
R-graph G = (V

m

˙[V
e

, E) is a directed rooted subtree
of G satisfying the following properties:

• rt(G) \ V (T ) = {rt(T )} and Le(T ) = Le(G);

• If v 2 V
m

\ V (T ) then exactly one child of v is in
T ;

• If v 2 V
e

\ V (T ) then every child of v in G is in
T .

Definition III.4 (k-R-graph Cover Decision Problem
(kRGCDP)). Given a R-graph G = (V

m

˙[V
e

, E) with
scoring function � : V

e

! R�0, a positive integer k, and
a real number !, does there exist a set T = {T1, . . . , T

k

}
of k R-trees in G such that

P
v2Ve(T ) �(v) � ! where

V
e

(T ) =

S
1ik

V
e

(T
i

).

Theorem III.1. kRGCDP is NP-complete.

The proof is given in Appendix A3.

B. An Approximation Algorithm for kRCP

The kRCP is a special case of the much more general
Weighted Maximum Coverage Problem defined as fol-
lows [9]:

Problem III.1. Weighted Maximum Coverage Problem
(WMCP) Given a universe set U = {u1, . . . , un

} with a
weight function w : U ! R�0, a collection of sets S =

{S1, . . . , Sm

} over the given universe, and a positive
integer k  m, find a subset S0 ✓ S such that |S0| = k
and

P
u2

S
Si2S0 Si

w(u) is maximized.

In the case of kRCP, the universe is the set of events, the
weight function is the scoring function, and the sets are
the reconciliation trees. While WMCP is NP-complete,
a simple polynomial-time approximation algorithm com-
putes solutions for WMCP that are, at worst, within a
factor of 1� 1

e

of optimal [9]. The algorithm chooses the
set with the largest total weight, removes that set from
the collection and removes the elements in that set from
all remaining sets in the collection, and repeats until k
sets have been selected.

However, in the case of kRCP, we cannot enumerate all
of the sets since there can be exponentially many MPRs.
Instead, we adapt the simple dynamic programming
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algorithm from [16] to efficiently find the reconciliation
with the greatest total score. Specifically, we begin by
traversing the undated reconciliation graph in postorder
– that is, first the leaves, then their parents, and so
forth towards the roots. This is possible because, by
Lemma II.1, the undated reconciliation graph is acyclic.
We compute a total score ⌧ for each node v in the
reconciliation graph as follows:

• If v is a leaf then its total score is simply its score,
�(v);

• If v is a non-leaf event node, then ⌧(v) is the sum
of the ⌧ values of its children;

• If v is a mapping node, then ⌧(v) is the maximum
of the ⌧ values of its children.

Once the total scores have been computed, the reconcil-
iation tree with maximum total score can be found by
starting at the root node with maximum total score in
the reconciliation graph and traversing the graph using
the events that constitute that maximum total score.
Finally, the scores of those events are set to zero so
that those events do not contribute to the total scores
of reconciliations chosen in subsequent iterations. Note
that while each event contributes its score to only one
reconciliation, an event may (and often will) occur in
several of the reconciliations found by this algorithm
because that event is necessary in the construction of
other high scoring reconciliations.

In summary, given an instance of the maximum par-
simony reconciliation problem comprising gene tree
G, species tree S, leaf mapping L : Le(G) !
Le(S), DTL costs C�, C⇥, and C⇤, scoring func-
tion �, and a desired number of reconciliations k,
our kRCP approximation algorithm works as follows:

Algorithm 1: kRCP
Input: Gene tree G, Species tree S, leaf mapping

L : Le(G) ! Le(S), DTL costs C�, C⇥, and C⇤,
scoring function �, and a desired number of
reconciliations k

Output: A set of k reconciliation trees that gives a 1� 1
e

approximation to the k-Reconciliations Cover Problem

1 ReconciliationCover = ?
2 Compute the annotated MPR matrix c using the U-MPR

Algorithm [1]
3 Compute the undated reconciliation graph as described in

Appendix A1
4 for k times do
5 Compute total score ⌧ for the reconciliation graph
6 Find the reconciliation tree T of maximum total score and

set the event scores in T to 0
7 Add T to ReconciliationCover

8 return ReconciliationCover

Theorem III.2. The worst-case running time of the
kRCP Algorithm is O(k|G||S|2).

Proof. Line 2 takes time O(|G||S|), line 3 takes time
O(|G||S|2) and creates a reconciliation graph with
O(|G||S|2) nodes and O(|G||S|2) edges. Each iteration
of the loop at line 4 takes time linear in the size of
the reconciliation graph. Thus, the total running time is
O(k|G||S|2).

We note that this running time does not include the
cost of computing the scores for the events because
this depends entirely on the choice of scoring function.
Scoring functions are addressed in the next section.

C. Temporal Feasibility

Finally, since we assume that the species trees are not
dated, the reconciliations that are returned by the kRCP
algorithm may be temporally infeasible. We test each
reconciliation for temporal feasibility using an algorithm
similar to one described by Tofigh [18].2

Specifically, given gene tree G, species tree S, and a
DTL-scenario found by the kRCP algorithm we con-
struct a directed graph F = (V, E), called a temporal
feasibility graph, as follows:

1) V = I(S) [ I(G) [ {`} where I(S) and I(G) rep-
resent the internal nodes of S and G, respectively,
and ` is a single node representing all of the leaves
of S and G.

2) For each pair of nodes u, v 2 V such that u is the
parent of v in either S or G, there is a directed edge
(u, v) 2 E.

3) For each v 2 V such that its corresponding node
in S or G is the parent of a leaf, there is an edge
(v, `) 2 E.

4) For each gene node g associated with species node
s in the DTL-scenario:

a) If the association is via a speciation event, g and
s are identified (i.e., g is removed from the graph
and all edges entering g are redirected to enter s
and all nodes leaving g now leave s).

2One difference between our test and the one in [18] is that we
test that the reconciliation is temporally consistent given the takeoff
and landing sites for each transfer event. The test in [18] does not
specify the landing sites of transfer events and thus may determine
that the scenario is feasible by moving landing sites to locations that
are not consistent with any MPR.
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b) If the association is via a duplication event, we
add the directed edge (pa

S

(s), g) (unless s =

rt(S)) and edge (g, s).
c) If the association is via a transfer event with

landing site s0, we add the directed edges
(pa

S

(s), g), (g, s), (pa
S

(s0), g), (g, s0).

A directed edge (u, v) represents the constraint that node
u must have a date that comes before the date of v. Thus,
the edges in 1–3 above enforce that ancestor nodes must
have dates that come before their descendants. The edges
in 4 enforce the relative dates of genes and the species
with which they are associated. In particular, 4(c) ensures
that the dates of takeoff and landing sites for transfers
are contemporaneous. It is easily verified that there exists
a dating of the tree in which all events are temporally
consistent if and only if the temporal feasibility graph is
acyclic. Moreover, if the graph is acyclic, a topological
ordering of that graph gives a feasible dating for the
species tree in the given MPR.

IV. SOFTWARE TOOL AND EXPERIMENTAL RESULTS

The kRCP Algorithm has been implemented in the DTL-
RnB (Reconciliation Browser) software tool which is im-
plemented in Python and available for download as well
as a web-based application (www.cs.hmc.edu/dtlrnb).

A. Scoring Functions

DTL-RnB currently supports three different event scor-
ing functions described below. We note that the DTL-
RnB source code is publicly available and other scoring
functions can be easily added there.

Uniform: Each event in the reconciliation graph has a
score of 1. Thus, the kRCP problem seeks to find
k reconciliations that include as many events as
possible in the space of MPRs.

Frequency: Each event in the reconciliation graph is
scored by its frequency, namely the number of
MPRs that contain that event divided by the total
number of MPRs. The total number of MPRs can
be computed by algorithm U-MPR without impact-
ing its asymptotic running time of O(|G||S|)[1].
The frequencies of individual events can then be
computed by a single preorder traversal of the
reconciliation graph, and thus in time O(|G||S|2).

Region-Based: This function scores each event with its
robustness with respect to perturbations in event

costs. That is, an event that occurs in many MPRs
in a specified range of “nearby” event costs should
have a high score and one that occurs in fewer
MPRs in that range should have a lower score.
To that end, Libeskind-Hadas et al. [11] used the
concept of Pareto-optimal reconciliations to par-
tition the space of DTL event costs into a fi-
nite number of equivalence classes, or “regions”,
R = {R1, . . . , Rn

}, each comprising the set of
positive event costs (for duplication, transfer, and
loss; speciation is assumed to be a null event of
cost zero) that give rise to the same MPRs. In
other words, for any region R

i

2 R and any two
event costs in R

i

, the set of MPRs will be the
same for those costs. Computing these regions takes
time O(|G|5|S| log |G|) [11]. Since event costs are
unit-less, we assume that the cost of duplication
is normalized to 1 and the cost of transfer and
loss are relative to this normalized duplication cost.
Given an original set of event costs (1, C⇥, C⇤),
we first compute the corresponding reconciliation
graph G. Next, given two parameters t and `, we
use the aforementioned algorithm to compute the
regions for transfer costs ranging from C⇥ � t to
C⇥ + t and for loss costs ranging from C⇤ � `
to C⇤ + `. For each such region, we compute the
set of events that arise in the MPRs in that region.
Then, for each event in G, its score is the total
number of regions that contain that event. Finally,
we normalize scores to be between 0 and 1. Ulti-
mately, a score of 1 indicates that this event occurs
in at least one MPR in every region in the given
range whereas a score close to 0 indicates that the
event occurs in relatively few other regions. Note
that this scoring function assigns a strictly positive
cost to every event in G since every event occurs in
some reconciliation in the region corresponding to
the original event costs (1, C⇥, C⇤).

B. Experimental Results

To demonstrate the utility of our approach, we tested the
kRCP Algorithm on a real dataset comprising 4848 gene
trees for a species tree comprising 100 (predominantly
prokaryotic) species from the Tree of Life [6]. We used
DTL values of 2, 3, and 1, respectively.

We define a total cover to be a set of reconciliations that
cover all of the events in the space of MPRs, that is, the
least value of k in the k-Reconciliations Cover Problem
such that the score of the k selected MPRs is equal to
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(a) (b)

Fig. 3: (a) Total cover size versus number of MPRs and (b) range of total cover sizes for the Tree of Life dataset.

the total score of the events in the space of all MPRs.
We define the total cover size to be the size of that total
cover.

Figure 3(a) shows the distribution of total cover sizes
for the 4848 gene trees and (b) shows the range of
total cover sizes using event frequency as the scoring
function. Almost 50% of the cases required at most
three reconciliations to cover the space of all events
found in MPRs, and fewer than 6% required more than
ten reconciliations. The largest number of reconciliations
needed was 54, and this was for a case in which there
were over 1015 MPRs. These results clearly demonstrate
that a small number of reconciliations can be used to
summarize the set of events in potentially large recon-
ciliation spaces.

The results for uniform and region-based scoring were
very similar with respect to the total cover size. However,
the MPRs comprising the total covers under the three
scoring schemes were not identical because the kRCP
algorithm uses the event scores in choosing the reconcil-
iations. For the Tree of Life data, we found that the fre-
quency and uniform scoring differed in 7.9% of events,
uniform and region-based by 9.1%, and frequency and
region-based by 10.0%3.

3We chose 100 random gene trees from the Tree of Life dataset.
For each one, we computed the total cover using uniform, frequency,
and region-based scoring. For each pair of scoring functions, we
examined corresponding MPRs in the respective kRCP solutions (e.g.,
the first MPRs in each solution, the second, etc.). We then computed
the percentage difference in those two reconciliations (i.e., the size
of the symmetric set difference in their respective sets of events
divided by the total number of events in the two reconciliations). We
then averaged these percentage differences to compute the overall
differences between the two scoring functions.

We also used synthetic simulated datasets from [3]
comprising 100 species trees with 50 taxa and three sets
of 100 gene trees, constructed with different duplication
and transfer rates. For each of the 300 total instances,
we used uniform, frequency, and region-based scoring.
For these data, the number of MPRs ranged from 1 to
100 and required at most 7 MPRs in a .

For the Tree of Life data, 17.4% of all reconciliations
found in the total covers were temporally infeasible.
For the synthetic data, only 0.4% of the reconciliations
in the s were temporally infeasible. The discrepancy
between these rates of temporal infeasibility is not well
understood and, while it is not in the scope of this study,
it is an interesting issue for future exploration.

C. DTL-RnB Software Tool

The DTL-RnB (Reconciliation Browser) is a web-
based tool that allows users to upload gene trees,
species trees, and leaf associations in newick for-
mat, input values for the DTL costs, choose from
the aforementioned scoring functions, and browse the
MPRs found by the kRCP Algorithm. The reconcili-
ations are rendered using the vistrans tool developed
by Matthew D. Rasmussen [14]. The DTL-RnB source
code, written in Python 2.7, is also available for down-
load. The web tool, software, and instructions can be
found at www.cs.hmc.edu/dtlrnb.

For each reconciliation found by the kRCP algorithm,
DTL-RnB uses the test described in Section III-C to
determine if it is temporally feasible. If so, it uses a
topological ordering of the temporal feasibility graph to
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date the species tree and renders the reconciliation with
respect to that dating. If the reconciliation is determined
to be temporally infeasible, we wish to remove the
least number of edges in order to make the temporal
reconciliation graph acyclic, and then use that graph to
date the species tree. However, this is the NP-complete
FEEDBACK ARC SET problem [8]. Thus, DTL-RnB
instead uses a greedy heuristic that identifies a cycle in
the temporal feasibility graph, removes the edges in that
graph corresponding to an arbitrarily selected transfer
event in that cycle, and repeats until the graph becomes
acyclic. It then uses a topological ordering of this graph
to date the species tree. All of the events, including
the transfer events that were implicated in cycles, are
rendered in the reconciliation. However, those cycle-
inducing transfer events are highlighted in the DTL-
RnB viewer. This feature is intended to help the user
identify the “degree” of temporal infeasibility in the
reconciliation. A screenshot of the DTL-RnB software
is shown in Figure 4.

Fig. 4: A screenshot of the DTL-RnB web-based soft-
ware tool.

V. CONCLUSIONS

In this work, we have described a new approach for sum-
marizing the potentially very large space of maximum
parsimony reconciliations. In particular, we formulated
the k-Reconciliations Cover Problem (kRCP), proved
that it is NP-complete, and showed how the greedy
approximation algorithm for the Weighted Maximum
Coverage Problem can be applied to find solutions that
are within a factor of 1 � 1

e

of optimal. Experimen-
tal results indicate that this approach can summarize
very large solution spaces using very few maximum
parsimony reconciliations. Finally, we implemented our
algorithms in the DTL-RnB web-based tool.

There are a number of interesting directions for future
research. First, the 1� 1

e

approximation algorithm used
here might be improved by exploiting properties of un-
dated reconciliation graphs. Second, our approach seeks
to maximize the total score of the included events for a
given number, k, of reconciliations. An alternative is to
use an approach like k-means clustering to partition the
space of reconciliations into k clusters and report the
k reconciliations that best represent each cluster (with
respect to an appropriate distance function). Finally,
additional experimental studies could help determine the
merits of different event scoring functions.
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APPENDIX

A.1 Algorithm for Constructing Undated Reconciliation
Graphs

Here we give a formal description of the algorithm for
constructing undated reconciliation graphs and derive its
worst-case running time.

Lemma. The worst-case running time of Algorithm 2 is
O(|G||S|2).

Proof. First, each gene node g can be associated with
each species node s as a speciation in two different ways
depending on how the two children of s are associated
with the two children of g, duplication in just one way,
transfer in up to O(|S|) ways depending on which child
of g is transferred and the landing site of that transferred
child, or loss in two ways. Thus, there are a total of
O(|S|) possible associations for a pair (g, s).
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Algorithm 2: MakeReconciliationGraph
Input: Gene tree G, species tree S, and annotated maximum

parsimony matrix c.
Output: Undated reconciliation graph G = (Vm[̇Ve, E) for G

and S

1 Initialize Q as an empty queue and Vm, Ve, and E as ?
2 cmin = mins2V (S) c(rt(G), s)
3 foreach s 2 V (S) do
4 if c(rt(G), s) = cmin then
5 Vm = Vm + (rt(G), s)
6 Enqueue (rt(G), s) to Q

7 while Q is not empty do
8 Dequeue (g, s) from Q

9 foreach event 2 c(g, s).events do
10 Ve = Ve + event

11 E = E + ((g, s), event)
12 foreach (g0, s0) 2 event.associations do
13 if (g0, s0) /2 Vm then
14 Enqueue (g0, s0) to Q

15 Vm = Vm + (g0, s0)

16 E = E + (event, (g0, s0))

17 return G = (Vm[̇Ve, E)

Line 2 takes O(|S|) time, the loop in lines 3–6 takes
O(|S|) time, and the loop in lines 7–16 takes O(|G||S|2)
time because each pair (g, s) can be dequeued in line 8
and enqueued at line 14 at most once and has O(|S|)
associations that can be considered at line 12.

A.2 Algorithms for Converting Between MPRs and Un-
dated Reconciliation Trees

Algorithms 3 and 4 below transform an MPR to an
undated reconciliation tree and an undated reconcilia-
tion tree to a MPR, respectively. These transformations
establish the bijection between MPRs and undated rec-
onciliation trees.

A.3 NP-completeness

In this section we prove Theorem III.1.

Proof. First, given a solution T to a kRGCDP instance
with G = (V

m

˙[V
e

, E), k and !, we can trivially verify
in polynomial time (with respect to |V

m

˙[V
e

| and |E|
whether |T | = k and

P
v2Ve(T ) �(v) � !. Therefore

kRGCDP 2 NP.

Next, we show that kRGCDP is NP-hard using a
polynomial-time reduction from 3SAT. Suppose we are
given a 3SAT instance with n variables x1, x2, . . . , xn

and m clauses C1, C2, . . . , Cm

.

Algorithm 3: MPRToReconciliationTree
Input: Gene tree G, species tree S, and MPR

↵ = (L,M,⌃,�,⇥,⌅, ⌧) for G and S

Output: Undated reconciliation tree T corresponding to ↵

1 Vm(T ) = {(rt(G),M(rt(G)))}
2 Initialize Ve(T ) and E(T ) as ?
3 foreach g 2 I(G) in pre-order do
4 if g 2 ⌃ then
5 event.type = S(g,M(g))

6 else if g 2 ⇥ then
7 event.type = T(g,M(g))

8 else
9 event.type = D(g,M(g))

10 event.associations = ?
11 foreach g

0 2 ChG(g) do
12 s

0 = M(g0)
13 Vm(T ) = Vm(T ) + (g0,M(g0))
14 if g 2 ⌃ then
15 k = dS(M(g),M(g0))

16 else if g 2 ⇥ and (g, g0) 2 ⌅ then
17 k = dS(⌧(g),M(g0)) + 1

18 else
19 k = dS(M(g),M(g0)) + 1

20 for j from k � 1 to 1 do
21 event

0 = (L(g0,paS(s0)), {(g0, s0)})
22 Vm(T ) = Vm(T ) + (g0, paS(s

0))
23 Ve(T ) = Ve(T ) + event

0

24 E(T ) = E(T ) [
{((g0, paS(s

0)), event0), (event0, (g0, s0))}
25 s

0 = paS(s
0)

26 event.associations = event.associations+ (g0, s0)

27 Ve(T ) = Ve(T ) + event

28 E(T ) = E(T ) + ((g,M(g)), event)
29 foreach (g0, s0) 2 event.associations do
30 E(T ) = E(T ) + (event, (g0, s0))

31 foreach g 2 Le(G) do
32 event = (C(g,L(g)),?)
33 Ve(T ) = Ve(T ) + event

34 E(T ) = E(T ) + ((g,L(g)), event)
35 return T

Consider an R-graph G constructed as follows.

1) For each variable x
i

, introduce nodes X
i

and X 00
i

in V
m

(G) and node X 0
i

(which we call a variable
node) in V

e

(G). Add an edge from X
i

to X 0
i

and
another from X 0

i

to X 00
i

.

2) For each variable x
i

, introduce node x
i

(which
we call a literal node) in V

e

(G) and an edge from
X 00

i

to x
i

if the literal x
i

appears in the given
3SAT instance. Similarly, introduce literal node x

i

in V
e

(G) and an edge from X 00
i

to x
i

if the literal
x
i

appears in the given 3SAT instance.
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Algorithm 4: ReconciliationTreeToMPR
Input: Gene tree G, species tree S, and undated reconciliation

tree T

Output: MPR ↵ = (L,M,⌃,�,⇥,⌅, ⌧) corresponding to T

1 Initialize ⌃, �, ⇥ and ⌅ as ?
2 foreach (g, s) 2 Vm(T ) do
3 {event} = ChT ((g, s))
4 if event.type 6= L(g,s) then
5 M(g) = s

6 if event.type = S(g,s) then
7 ⌃ = ⌃+ g

8 else if event.type = D(g,s) then
9 � = �+ g

10 else if event.type = C(g,s) then
11 L(g) = s

12 else if event.type = T(g,s) then
13 ⇥ = ⇥+ g

14 foreach g 2 ⇥ do
15 {(g0, s0), (g00, s00)} = ChT (T(g,M(g)))
16 if s0 = M(g) then
17 ⌅ = ⌅+ (g, g00)
18 ⌧(g) = s

00

19 else
20 ⌅ = ⌅+ (g, g0)
21 ⌧(g) = s

0

22 return ↵ = (L,M,⌃,�,⇥,⌅, ⌧)

3) For each clause C
j

, introduce nodes C
j

and C 00
j

in V
m

(G) and node C 0
j

(which we call a clause
node) in V

e

(G). Add an edge from C
j

to C 0
j

and
another from C 0

j

to C 00
j

.

4) For each literal x
i

(or x
i

) that appears in the 3SAT
instance, add nodes and edges to the graph as fol-
lows. Initialize A

i

= {↵i

1, ↵
i

2, . . .} = {node C
j

:

clause C
j

contains literal x
i

}. Next, create a bi-
nary tree that contains these nodes as leaves
(although these leaves will later become inter-
nal nodes) as follows: Create d |Ai|

2 e new nodes,
↵i

0

`

2 V
e

(G), and add an edge from ↵i

0

d`/2e to ↵i

`

for 1  `  |A
i

|. Then create d |Ai|
2 e new nodes,

↵i

00

`

2 V
m

(G), and add an edge from ↵i

00

`

to ↵i

0

`

for each `. Recurse by performing the process
described above with A

i

set to be the nodes
A

i

= {↵i

00

1 , . . . , ↵i

00

`

, . . .} until A
i

contains only
one node. At this point, terminate the recursion
and denote the single node by x0

i

2 V
m

(G). Add
an edge from x

i

to x0
i

.

5) Introduce m leaf nodes L1, . . . , Lm

2 V
e

(G). For
each leaf node L

i

, add a node L0
i

in V
m

(G) and
an edge from L0

i

to L
i

.

6) For each clause C
j

introduce
�
m

2

�
nodes

Rj

1,1, R
j

1,2, . . . , R
j

1,m, Rj

2,2, . . ., Rj

2,m, . . . , Rj

m,m

(which we call range nodes) in V
e

(G). Add an
edge from C 00

j

to each of these
�
m

2

�
nodes.

7) For each range node Rj

s,e

recursively add nodes
and edges to the graph as follows: Initialize
Bj

s,e

= {�j

1, �
j

2, . . .} = {L0
s

, L0
s+1, . . . , L

0
e

}. Cre-
ate d |B

j
s,e|
2 e new nodes, �j

0

`

2 V
e

(G), and add an
edge from �j

0

d`/2e to �j

`

for 1  `  |Bj

s,e

|. Then

create d |B
j
s,e|
2 e new nodes, �j

00

`

2 V
m

(G), and add
an edge from �j

00

`

to �j

0

`

for each `. Recurse by
performing the process described above with Bj

s,e

set to be the nodes Bj

s,e

= {�j

00

1 , . . . , �j

00

`

, . . .}
until Bj

s,e

contains only one node. At this point,
terminate the recursion and denote the single node
by Rj

0

s,e

2 V
m

(G). Add an edge from Rj

s,e

to Rj

0

s,e

.

Figure 5 shows an example of an R-graph constructed
from a 3SAT instance.

Note that for each of the O(n) literal nodes, we add
O(m) nodes in step 4. Then for each of the m clause
nodes we add

�
m

2

�
2 O(m2

) range nodes, and for each
range node, we add O(m) nodes in step 7. Therefore,
|V (G)| 2 O(nm + m4

), so this construction takes
polynomial time.

We first prove the following claims. For each literal x
i

(or x
i

):

1) There exists a nonempty set T
xi of R-trees in G,

each of which contains literal node x
i

.

2) Every T 2 T
xi does not contain any other literal

nodes.

3) For every T 2 T
xi , the only variable node that T

contains is X 0
i

.

4) Every T 2 T
xi contains all clause nodes C 0

j

corresponding to clauses that contain literal x
i

.

We prove Claim 1 by constructing an R-tree containing
literal node x

i

as follows. We start by choosing x
i

to be
part of the tree and moving up from x

i

. By construction
of G, there is only one unique path to a root, specifically
X

i

. We add all the nodes and edges on that path. We then
move down from x

i

, adding nodes and edges consistent
with the definition of an R-tree. This results in a unique
partial traversal up until we reach nodes C = {C 00

j

:

clause C
j

contains literal x
i

}. Next, we add node Rj

j,j
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Fig. 5: A sample R-graph constructed from a 3SAT
instance. Nodes and edges are labeled on the right with
the step number (as described above) in which they were
introduced. Nodes in V

m

are represented by squares and
nodes in V

e

are represented by circles. Note that for this
graph, the original 3SAT instance included literal x2 in
clauses C1 through C4 and literal x

n

in clauses C4 and
C
m

. None of the clauses contained literal x2. Not all
edges and nodes are displayed in the figure.

and an edge from the jth element of C to Rj

j,j

for 1 
j < |C|. We also add node R

|C|
|C|,m and an edge from the

last element of C to R
|C|
|C|,m. Again, we continue adding

nodes and edges consistent with the definition of an R-
tree, eventually reaching all of the leaf nodes.

Note that upon choosing literal node x
i

to be part of the
tree, all of the nodes of types mentioned in Claims 2-4
are fixed by construction of G and by definition of an
R-tree. This completes the proof.

Next, we define the scoring function � : V
e

(G) ! R�0

by

�(v) =

8
><

>:
1,

if v = X 0
i

for some 1  i  n

or v = C 0
j

for some 1  j  m,

0, otherwise.

We now show that the given 3SAT instance has a solution

if and only if the kRGCDP instance with G, �, k =

n, ! = n + m has a solution:

()) Suppose the given 3SAT instance has a satisfying
assignment �. Construct T as follows:

1) Initially, let T = ?.

2) For each 1  i  n: If �(x
i

) = True, then add
an R-tree in G that contains literal node x

i

to T ;
otherwise, add an R-tree that contains literal node
x
i

to T .

Let X = {X 0
i

2 V
e

(T )} and C = {C 0
j

2 V
e

(T )}. By our
construction of T , X = {X 0

i

: 1  i  n}. Moreover,
since � is a satisfying assignment, C = {C 0

j

: 1  j 
m}.

Therefore, we have
X

v2Ve(T )

�(v) �
X

X

0
i2Ve(T )

�(X 0
i

) +

X

C

0
j2Ve(T )

�(C 0
j

)

=

nX

i=1

�(X 0
i

) +

mX

j=1

�(C 0
j

)

= n + m.

Also, since |T | = n, T is a valid solution to the
kRGCDP instance with G, �, k = n, ! = n + m.

(() Suppose that the kRGCDP instance with G, �, k =

n, ! = n + m has a solution T such that |T | = n andP
v2Ve(T ) �(v) � n+m. Since only the n variable nodes

and m clause nodes have nonzero scores, this implies
that all of them are covered by T . Therefore, there is
exactly one tree in T through each of the n variable
nodes X 0

i

. We construct the assignment � for the original
3SAT instance as follows. For each T 2 T , if T contains
x
i

, let �(x
i

) = True; if T contains x
i

, let �(x
i

) =

False. Because every clause node C 0
j

is covered by T 0,
by our construction of G, every corresponding clause
in the original 3SAT instance is satisfied. Since each
variable node is covered by exactly one tree, there are
no conflicts in the variable assignments. Therefore, � a
valid solution to the original 3SAT instance.


